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PARALLEL DOMAIN DECOMPOSITION STRATEGIES FOR
STOCHASTIC ELLIPTIC EQUATIONS PART B: ACCELERATED

MONTE CARLO SAMPLING WITH LOCAL PC EXPANSIONS˚
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Abstract. Solving stochastic partial differential equations (SPDEs) can be a computationally
intensive task, particularly when the underlying parametrization of the stochastic input field involves
a large number of random variables. Direct Monte Carlo (MC) sampling methods are well suited
for this type of situation since their cost is independent of the input complexity. Unfortunately,
MC sampling methods suffer from slow convergence. In this manuscript, we propose an acceleration
framework for elliptic SPDEs that relies on domain decomposition techniques and polynomial chaos
(PC) expansions of local operators to reduce the cost of solving a SPDE via MC sampling. The
approach exploits the fact that, at the subdomain level, the number of variables required to accurately
parametrize the input stochastic field can be significantly reduced, as covered in detail in the prequel
(Part A) to this paper. This makes it feasible to construct PC expansions of the local contributions
to the condensed problem (i.e., the Schur complement of the discretized operator). The approach
basically consists of two main stages: (1) a preprocessing stage in which PC expansions of the
condensed problem are computed and (2) a Monte Carlo sampling stage where random samples of
the solution are computed. The proposed method its naturally parallelizable. Extensive numerical
tests are used to validate the methodology and assess its serial and parallel performance.

Key words. stochastic elliptic equations, domain decomposition, polynomial chaos expansion,
Monte Carlo method
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1. Introduction. Stochastic partial differential equations (SPDEs) are of great
importance in a wide range of applications. Computational approaches for the solu-
tion of SPDEs conceptually involve three essential steps: the modeling of the input
uncertainty, the solution of the governing equations, and ultimately the postprocess-
ing the output to characterize the uncertainty. This paper (Part B) and its prequel
(Part A) focus on the first two steps. In Part A [10], we discussed a domain decompo-
sition strategy to approximate random fields (input uncertainty) using local reduced
bases and local coordinates. Now (in Part B), the structure of local representations
is exploited to accelerate the Monte Carlo (MC) sampling of the solution.
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C548 CONTRERAS ET AL.

Two common approaches to solving SPDEs are the stochastic spectral method [16,
22] and MC sampling methods [5, 31, 2, 8]. One particular class of stochastic spectral
methods uses polynomial chaos (PC) expansions. PC expansions have been studied
extensively [16, 22, 38] and perform very well in a number of applications, includ-
ing elliptic and parabolic problems with random coefficients [23, 11, 1, 12, 15] and
fluid flow models [24, 20, 26]. Unfortunately, the use of PC expansions is subject
to the curse of dimensionality and can quickly become computationally intractable
when the stochastic dimension is large (the complexity can grow exponentially as a
function of the stochastic dimension). Different methods have been devised to ad-
dress the complexity issue, e.g., using low-rank approximations [28, 29, 30, 36] and
adaptive strategies [4, 3, 7], but when the stochastic dimension is very large, some of
the challenges can still remain [9]. On the other hand, the cost of direct MC sampling
methods is independent of the stochastic dimension, which is a desirable feature when
dealing with high-dimensional problems. However, it is known that MC methods have
a slow convergence rate, with the root mean squared error inversely proportional to
the square root of the number of samples. So, if the computational cost of obtaining
an individual sample is high, these methods can be quite costly.

The stochastic dimension of the problem is closely related to the stochastic dis-
cretization method used to solve the problem. One common approach to discretize
the stochastic space is the Karhunen–Loève (KL) expansion [25, 18, 17]. The num-
ber of terms in the KL expansion is what sets the stochastic dimension, and it turns
out that for a given accuracy level, the number of terms in the expansion is actually
proportional to the size of the physical domain. Thus, the smaller the domain, the
fewer terms that are necessary in the expansion to achieve a desired level of accuracy.
In [6], Chen et al. rely on the domain decomposition technique to exploit this fact. By
partitioning the global domain into smaller subdomains, a set of local problems is
obtained, each with a significantly reduced stochastic dimension. In [32], Gosh and
Pranesh present a closely related approach based on the spectral stochastic finite
element (FE) method.

In both of the approaches mentioned above, PC approximations of the local prob-
lem solution at the subdomain level are constructed. The cost of obtaining these local
PC approximations is reduced by using the local random variables over each subdo-
main (i.e., the lower stochastic dimension at the subdomain level reduces the cost).
An important point that is acknowledged in these two papers is that the local ran-
dom variables in one subdomain have a dependence structure on the local random
variables in other subdomains. Nonetheless, in these two works, the local random
variables are treated as independent across subdomains (corrections are made with
the introduction of additional global random variables). In contrast, in our proposed
approach developed in the two-parts manuscript, we consider the actual dependence
structure of the local variables and use them in the construction of local boundary-to-
boundary maps that help us accelerate the solution of stochastic elliptic PDEs via MC
sampling. Part A [10] analyzed in detail the local KL expansions approach and the
dependences of the local random variables. The present Part B concerns the solution
of the stochastic elliptic PDEs by means of a MC sampling method that is accelerated
by constructing PC expansions of the boundary-to-boundary maps (and not of the
local problem solutions).

More precisely, our proposed approach is divided into two main stages: (1) a
preprocessing stage in which PC expansions of a condensed problem are computed and
(2) a Monte Carlo sampling stage where samples of the solution are computed. First,
the physical domain is discretized using the FE method, then the global domain Ω is
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DOMAIN DECOMPOSITION FOR MONTE CARLO METHOD C549

divided into D nonoverlapping subdomains. This results in a condensed problem for
the nodal values at the subdomains’ interfaces. Given this discretization, the prepro-
cessing stage starts by breaking the condensed problem into individual contributions
from each subdomain and computing local KL expansions over each subdomain (as
described in [10]). Then, using the local KL expansion and taking advantage of the
reduced stochastic dimension of the local problems, PC expansions of the local contri-
butions to the condensed problem are constructed. The second stage then consists of
generating samples (this requires taking into consideration the dependence structure
of the local random variables), evaluating the PC expansion of the reduced problem
for said samples, and solving the reduced problem to obtain samples of the solution.

In summary, our approach is a parallel solver that takes advantage of the PC
method at the local level to reduce the cost of using the MC sampling method at a
global level. There are two main contributions of the current work. First, we take into
account the dependence structure of the local random variables across subdomains.
Furthermore, these local random variables are jointly sampled with the convenient
approach described in [10], which allows us to accurately characterize the random
process on which the SPDE depends. (In general, this is not possible when the
local random variables are assumed independent across subdomains.) The second
contribution is that we use the local expansions to construct local PC expansions
of the condensed problem (as opposed to constructing local PC expansion of the
solutions at the subdomain level), and from these local expansions we build a PC
expansion of the global condensed problem, which significantly reduces the sampling
cost in the MC sampling method. We remark that by building the global condensed
system in this manner, we preserve the proper dependence structure in the overall
solution sought.

The outline of this paper is as follows. In section 2, we first recall how the domain
decomposition method is applied, both to a deterministic and to a stochastic PDE,
and also discuss the MC sampling method. In section 3, we discuss the limitations of
constructing a PC expansion of the solution and describe how instead we proceed with
the construction of the PC expansion of the condensed problem. We also address the
sampling of the condensed problem and outline some of the implementation details.
Next, in section 4, the method is validated with some numerical results. In section 5,
we analyze for the test case the performance of the method terms of complexity and
parallel efficiency. Finally, in section 6, some concluding remarks are provided.

2. Elliptic problem.

2.1. Deterministic case. We consider the following elliptic problem in a
bounded domain Ω Ă Rm with boundary BΩ:

#

∇ ¨ pκpxq∇uq “ ´fpxq, x P Ω

Bpx, uq “ 0, x P BΩ,
(1)

where B is the (linear) boundary condition operator and 0 ă κmin ă κpxq ă κmax ă

`8 is the diffusion coefficient. For simplicity, we shall restrict ourselves to the case
of homogeneous Dirichlet and Neumann boundary conditions, that is,

upx P BΩDq “ 0, Bnupx P BΩN q “ 0,(2)

where Bn is the derivative in the normal direction and ΩD and ΩN are the Dirichlet
and Neumann parts of the boundary such that BΩN Y BΩD “ BΩ, BΩN X BΩD “ H.
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C550 CONTRERAS ET AL.

To solve (1), we consider standard FE methods based on a conforming triangu-
lation of Ω into a set, T , of Ne nonoverlapping elements, Σe. The FE approximation
is based on a nodal basis representation. Let n be a node of the mesh, with position
xn; we denote by N the set of nodes that do not belong to the Dirichlet boundary
BΩD and Nn

.
“ |N | the number of nodes in N . The approximation of u is sought as

upxq «
ÿ

nPN
vnpxqun,(3)

where the functions vn are nodal basis functions satisfying

@n,n1 P N , vnpxn1q “

#

1, n “ n1

0, n1 ‰ n
(4)

and vnpx P BΩDq “ 0. It is further assumed that the support of vn is limited to
the elements that have n as one of their nodes. The weak form of problem (1) is as
follows:
Find u P V FE such thatˆ

Ω

κpxq∇upxq ¨∇ṽpxqdx “

ˆ
Ω

fpxqṽpxqdx @ṽ P V FE,(5)

where V FE is the linear span of nodal functions tvn,n P N u. The variational problem
can be recast as a linear system of equations for the vector, u, of unknown nodal
values,

rAsu “ b,(6)

where u and b P RNn . The system matrix rAs P RNnˆNn is symmetric positive definite
with entries

rAsnn1 “

ˆ
Ω

κpxq∇vnpxq ¨∇vn1pxqdx.(7)

The components of the system right-hand side are given by

bn “

ˆ
Ω

fpxqvnpxqdx.(8)

2.1.1. Domain decomposition method. Owing to the compact support of
the nodal basis functions, the matrix rAs is sparse, and efficient iterative methods
(e.g., preconditioned conjugate gradient) can be employed to solve (6). However, the
system size Nn may be large, inducing a significant resolution cost and motivating the
introduction of domain decomposition methods [21, 33, 35, 37].

Domain partitioning. To this end, we first partition Ω into a set of D nonover-
lapping subdomains Ωpdq consisting of subsets T pdq of neighboring elements; we have

Ωpdq
.
“

ď

ePT pdq

Σe,
D
ď

d“1

T pdq “ T , T pdq X T pd
1
‰dq “ H,(9)

where Ωpdq is the closure of Ωpdq. We denote N
pdq
e “ |T pdq| the number of elements in

Ωpdq and N pdq the subset of nodes in N belonging to Ωpdq:

N pdq “

!

n P N ;xn P Ωpdq
)

.(10)
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DOMAIN DECOMPOSITION FOR MONTE CARLO METHOD C551

The sets N pdq can be further split into disjoint subsets of interior nodes belonging to
Ωpdq only and boundary nodes lying at the interface of more than one subdomain:

N pdq
in “

!

n P N pdq; n R N pd1
‰dq

)

, N pdq
Γ “ N pdqzN pdq

in .(11)

Clearly, the sets N pdq
in are disjoint, while N pdq

Γ XN pd1
q

Γ is not empty for two neighboring

subdomains such that BΩpdq X BΩpd
1
q ‰ H. We then define the full set of inner and

boundary nodes of the partitioned domain through

Nin “

D
ď

d“1

N pdq
in , NΓ “

D
ď

d“1

N pdq
Γ ,(12)

and set Nin “ |Nin|, NΓ “ |NΓ|. We can now rewrite the FE approximation of u
in (3) as

upxq «
ÿ

nPNin

unvnpxq `
ÿ

nPNΓ

unvnpxq.(13)

Iterative domain decomposition solver. Upon reordering of the nodes, the linear
system in (6) can be recast in the block matrix form

„

rAΓ,Γs rAΓ,ins

rAin,Γs rAin,ins

ˆ

uΓ

uin

˙

“

ˆ

bΓ

bin

˙

(14)

with the previous expressions for the matrix and right-hand-side entries. This system
can be further manipulated to eliminate the internal unknowns in uin to come up
with the condensed problem for the nodal values at the subdomains’ interfaces,

yrAsuΓ “ pb,(15)

where

yrAs
.
“ rAΓ,Γs ´ rAΓ,insrAin,ins

´1rAin,Γs, pb
.
“ bΓ ´ rAΓ,insrAin,ins

´1bin.(16)

Considering an iterative method to solve (15), the main computationally heavy task

amounts to performing matrix-vector products between yrAs and successive iterate

vectors of RNΓ . A closer inspection reveals that multiplying a vector by yrAs involves
solving for v by inverting a system of the form rAin,insv “ w. This step is actually
the heaviest one in the iterative solution, as it requires the solution of a linear system
whose dimension, Nn ´ NΓ, is generally close to the dimension of the noncondensed
problem, that is, Nn. However, it is crucial to remark that rAin,ins has a diagonal
block structure when the nodes in Nin are ordered by subdomains; in this case, we
have

rAin,insv “

»

—

—

—

—

—

—

–

”

A
p1q
in,in

ı

r0s ¨ ¨ ¨ r0s

r0s
. . .

. . .
...

...
. . .

. . . r0s

r0s ¨ ¨ ¨ r0s
”

A
pDq
in,in

ı

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

˚

˝

vp1q

...

vpDq

˛

‹

‚

“

¨

˚

˝

wp1q

...

wpDq

˛

‹

‚

ñ vpdq “
”

A
pdq
in,in

ı´1

wpdq.(17)D
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C552 CONTRERAS ET AL.

It shows that computing v “ rAin,ins
´1

w, given w P RNin , amounts to solving D
subsystems or local problems independently over each subdomain. Not only does this

call for the inversion of systems with much smaller sizes, typically N
pdq
in « Nn{D,

but these computations can be carried out in parallel for different subdomains. The
same remark also applies to the determination of the right-hand-side pb of the reduced

problem (15). The possibility of applying efficiently the condensed operator yrAs on a
vector u P RNΓ , through local solves over subdomains, motivates the use of matrix-

free types of iterative methods where yrAs is never formally assembled. In such an
approach, one eventually only computes the sparse matrices rAΓ,Γs and rAin,Γs and

the local problem matrices rA
pdq
in,ins. The latter, owing to their low dimension, can

even be factorized to speed up subsequent products with yrAs.
Finally, when the reduced problem solution uΓ is obtained, one can compute the

solution over selected subdomains solving local problems with corresponding Dirichlet
boundary conditions in uΓ (see below).

2.1.2. Subdomains expansion of the condensed operator. The discussion
above highlighted the role of the local problems in the structure of the condensed
problem. In fact, the system in (15) can be formally recast to highlight independent
contributions from the subdomains, namely, according to

yrAsuΓ “

D
ÿ

d“1

yrAs
pdq

u
pdq
Γ , pb “ bΓ `

D
ÿ

d“1

pb
pdq
,(18)

where u
pdq
Γ is the subvector of uΓ corresponding to the nodes lying on BΩpdq, whereas

the matrix yrAs
pdq

and vector pb
pdq

involve only contributions from the FMs in T pdq,
that is, the nodes belonging to Ωpdq. Abusing notations for simplicity, the square

matrices yrAs
pdq

and vectors pb
pdq

will have either the dimension N
pdq
Γ (the number of

interfacial unknowns in the pdqth subdomain) or the dimension NΓ (the total number
of interfacial unknowns) depending on the context. Extending the dimension from

N
pdq
Γ to NΓ is achieved by padding with zeros the entries corresponding to nodal

values not belonging to BΩpdq. For more details, see, for instance, [33, Chapter 2,
sections 3 and 4] or [37, Chapter 4, section 3]. Focusing first on the right-hand-side
expansion, we identify

pb
pdq .
“ ´

”

A
pdq
Γ,in

ı”

A
pdq
in,in

ı´1

b
pdq
in ,(19)

where, again, the matrices and vectors above correspond to their restrictions to the

elemental contributions from T pdq. Similarly, in the expansion of yrAs in (18), each

yrAs
pdq

u
pdq
Γ accounts for the contribution of the pdqth subdomain only. To derive an

expression for these matrices, we fix a subdomain d, select n P N pdq
Γ , and consider the

solution of
”

A
pdq
in,in

ı

u
pdq
in,n “ ´

”

A
pdq
in,Γ

ı

epdqn ,(20)

where e
pdq
n is the canonical vector with all zero component except the nth one equal

to 1. The solution u
pdq
in,n are the (internal) nodal values of the FE approximation of

the elliptic problem over Ωpdq for homogeneous boundary conditions all over BΩpdq,
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DOMAIN DECOMPOSITION FOR MONTE CARLO METHOD C553

except at node n P N pdq
Γ , where the nodal value is set to one. From this family of

elementary solutions, we define the vector

Ipdqn
.
“

”

A
pdq
Γ,in

ı

u
pdq
in,n `

”

A
pdq
Γ,Γ

ı

epdqn ,(21)

where

”

A
pdq
Γ,Γ

ı

n,n1

.
“

$

&

%

ˆ
Ωpdq

κ∇vn ¨∇vn1dx, n,n1 P N pdq
Γ

0, otherwise.
(22)

We observe that the computation of the vector I
pdq
n involves only quantities and

operators localized on the considered subdomain. In particular, we note that the
definition of the matrix in (22) involves an integral restricted to Ωpdq such that

rAΓ,Γs “
ř

drA
pdq
Γ,Γs. Finally, exploiting the linearity of elliptic equation and superpo-

sition principle, we obtain (through zero padding to make the dimensions consistent)

yrAsuΓ “

D
ÿ

d“1

yrAs
pdq

u
pdq
Γ , yrAs

pdq
u
pdq
Γ “

ÿ

nPN pdq

Γ

Ipdqn

´

u
pdq
Γ

¯

n
,(23)

showing that the columns of the matrices yrAs
pdq

are made of the vectors I
pdq

nPN pdq

Γ

.

Constructing the condensed operator expansion in (18) involves the solution over
each subdomain of a set of local elliptic problems (20), in fact, the same elliptic prob-

lem with N pdq
Γ right-hand sides. Although it can be performed efficiently in parallel,

the explicit construction of the condensed operator is generally not considered in the
practical implementation of domain decomposition approaches for elliptic problems
because of its computational complexity, which is generally larger than that of the di-
rect matrix-free iterative method described in the previous section. However, the case
of stochastic elliptic problems is different, as many stochastic samples may have to be
computed, so that having an explicit representation of the (now stochastic) condensed
operator may be interesting. We expand on this idea in the following sections.

2.2. Stochastic elliptic problem.

2.2.1. Formulation of the stochastic problem. We now extend the deter-
ministic problem in (1) to the stochastic case. The case of stochastic forcing f induces
no particular difficulty and can be treated in the framework to be introduced below.
For simplicity, we restrict the presentation to the case of a random diffusion field κ.
Let pΘ,Σ, µq be a probability triplet; the problem now becomes

∇ ¨ pκpx, θq∇upx, θqq “ ´fpxq, x P Ω, θ P Θ,(24)

with additional (almost sure) homogeneous Neumann and Dirichlet boundary condi-
tions for x P BΩ. For the well-posedness of the problem, we assume that the random
field κpx, θq is almost surely bounded below and above for almost every x. Then the
stochastic solution u has finite second-order moments,

E
“

upx, ¨q2
‰

“

ˆ
Θ

upx, θq2dµpθq ă `8,(25)

where E r¨s denotes the expectation operator.
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As in the deterministic case, we proceed with the spatial discretization over a
deterministic FE space V FE, expressing the discrete solution from its random nodal
values over the mesh:

upx, θq “
ÿ

nPN
unpθqvnpxq P VFE.(26)

Above, we denoted the solution space VFE which results from the tensorization
of the spatial FE space with the space of second-order random variables: VFE “

V FE b L2pΘ, µq. The (semi) weak form is obtained multiplying (24) by ṽ P V FE and
integrating (by parts) first over Ω; this results in

ˆ
Ω

κpx, θq∇upx, θq ¨∇ṽpxqdx “

ˆ
Ω

fpxqṽpxqdx @ṽ P V FE.

Note that the equality stands in the almost sure sense. Given the approximation
form in (26), the variational formulation can be recast in a linear system of equations
involving the vector of random nodal values upθq, the stochastic analogous of (6),

rAspθqupθq “ b, rAsn,n1pθq “

ˆ
Ω

κpx, θq∇vnpxq ¨∇vn1pxqdx.(27)

2.2.2. Direct MC sampling. A common approach to solve the discrete stochas-
tic problem is to resort to MC sampling methods. In an MC approach, samples
κpx, θiq of the the random field are generated, leading to samples of the stochastic
matrix rAspθiq and corresponding realizations upx, θiq P V

FE of the stochastic solu-
tion. Note that different samples can be computed in parallel, Different moments and
statistics of the solution can be computed; in particular, the solution mean and the
two-point correlations can be estimated from

E rupx, ¨qs “ lim
MÑ8

1

M

M
ÿ

i“1

upx, θiq, E
“

upx, ¨q, upx1, ¨q
‰

“ lim
MÑ8

1

M

M
ÿ

i“1

upx, θiqupx
1, θiq.

The computational complexity of the method is thus proportional to the number
of samples M one uses in the MC estimation, and there is an obvious interest in
reducing the computational cost of generating individual samples. Applying efficient
deterministic strategies is therefore critical, and for this purpose MC is well suited to
reuse the domain decomposition method detailed in the previous section. To do so,
we can first derive formally the stochastic form of the condensed problem,

yrAspθq uΓpθq “ pbpθq,(28)

where

yrAspθq “ rAΓ,Γspθq ´ rAΓ,inspθqrAin,ins
´1pθqrAin,Γspθq,(29)

pbpθq “ bΓ ´ rAΓ,inspθqrAin,ins
´1pθqbin,

and subsequently proceed with the MC sampling of the condensed problem to yield
samples of subdomain boundary nodal values uΓpθiq and solution upx, θiq. If one uses

a matrix-free iterative scheme without explicit construction of yrAspθiq, the heaviest
part of the computation is dedicated to the assembly of the local problem operators
rAin,ins

pdqpθiq and possibly their factorizations.
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At this point, we remark that, contrary to the deterministic case, the stochastic
condensed problem is going to be queried multiple times, as large values of M are
generally needed to obtain well-converged MC estimators. This is quite a different

situation from the deterministic case where the actual assembly of yrAs appears com-
putationally too expensive if it is to be queried only once. This observation suggests
that there could be an interest in actually assembling the stochastic condensed prob-
lem to sample from, as the overhead of the assembly would be factorized (amortized)
over the subsequent M samples. If such a strategy is feasible, one would jointly sample

directly the matrix yrAspθq and right-hand-side pbpθq to get samples of the boundary
solution uΓpθq by means of a matrix-based iterative method. As a result, one would
only have to solve a unique local problem per subdomain for each sample and only
for the subdomain where the solution is sought.

To be effective, the approach just sketched would have to fulfill two conditions.
First, the stochastic condensed problem matrix and right-hand side must be repre-
sented in a format amenable to sampling. Second, the assembly overhead must remain
reasonable for the method to be practical. Below, we rely on stochastic spectral expan-
sions to approximate the problem in a suitable format, then we exploit the underlying
structure of the condensed problem, namely, its expression as a sum of local stochastic
operators, to come up with representation having manageable complexity.

3. Stochastic spectral expansion of the condensed problem.

3.1. PC expansion of the elliptic solution. Stochastic spectral expansions
have been proposed as an alternative to MC methods. The key observation supporting
the spectral approach is the smooth dependences of the elliptic equation solution with
respect to the diffusivity coefficients. This fact motivates the expansion of the solution
upx, θq as a series of the form

upx, θq “
ÿ

α

uαpxqΨαpθq,

where the Ψα are random functionals. Typically, one starts by approximating the
diffusion field κ as a functional of a finite set of nt ě 1 independent random variables
ηpθq with known density:

κpx, θq « κ̂px,ηpθqq.(30)

Such parametrization of κ can be obtained, for instance, by computing KL expansions
as in the following sections. As a result, the solution is a functional of ηpθq, and the
truncated spectral expansion becomes

upx, θq « ũpx,ηpθqq “
ÿ

αPA
uαpxqΨαpηpθqq.(31)

Classically, one considers expansions using orthonormal functionals Ψα, in particular,
polynomials in η. In this case, the expansion in (31) is called the polynomial chaos
expansion of u. The multi-index α “ pα1, . . . , αnt

q P Nnt indicates the maximal
polynomial degree αk in each component ηk, and we shall denote |α| “

řnt

k“1 αk the
total degree of Ψα. The functionals are orthonormal in the sense that

E rΨαΨβs “

ˆ
Θ

ΨαpηpθqqΨβpηpθqqdµpθq “

#

1, α “ β,

0, otherwise.
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Finally, the summation in (31) is restricted to α belonging to the multi-index set
A Ă tα P Nntu. Different strategies can be used to define this set; without loss of
generality and unless specified otherwise, we shall control A by the maximal total
polynomial degree No of the expansion, setting

A “ tα P Nnt , |α| ď Nou.

Under mild assumptions on κ, the solution u has exponentially converging expansions
with respect to the number of random variables in η and with the polynomial degree
No of the truncated form of the expansion. Regarding the computation of the expan-
sion coefficients uα, different approaches have been proposed and improved over the
last 25 years. These include the Galerkin and nonintrusive methods. In Galerkin-
type methods, one requires the equation residual to be orthogonal to the stochastic
approximation space, with possibly the need of deriving from the original stochastic
elliptic operator a set of coupled problems for the expansion coefficient uα. Nonintru-
sive methods are sampling-based approaches where one directly estimate the uα from
a set of resolutions of the deterministic elliptic problem corresponding to realizations
of η.

The main limitation in the applicability of the spectral expansions to the solution
of stochastic elliptic problems comes with the number of terms in the series that can
be prohibitively large in some situations. This has motivated adaptive strategies,
in particular, low-rank approximations. However, the case of diffusion fields κ with
large variances and short correlation lengths remains challenging because it requires,
first, a large number nt of random variables for their parametrization in (30) and,
second, a high-degree No for the polynomial expansions. The issue can be seen from
the expression of the number of terms in an expansion (with total degree truncation)
involving nt random variables and degree No:

P “ |A| “ pnt `Noq!

nt!No!
.(32)

Although more advanced truncation strategies have been proposed, in particular,
adapting the expansion order in the different variables of η [4, 3], the relation (32)
shows that cases of large-dimensional problems (η) remain critical even for low orders
and that it is highly desirable to keep the dimension of η as small as possible.

3.2. Spectral expansion of the condensed problem.

3.2.1. Local parametrization. It is well known that the dimensionality of η
relates to the intrinsic stochastic dimensionality of κ, which, roughly speaking, corre-
sponds to the minimal number of random variables in its parametrization. It is also
known from the properties of second-order orthogonal decompositions à la Karhunen
and Loève that the stochastic dimensionality of a field over a fixed domain increases as
its correlation length decreases. The stochastic dimensionality of a stationary process
is actually governed by the ratio of correlation length and domain extension, express-
ing the fact that a lower number of random variables can be used to parametrize
the process over a subdomain. This feature is exploited in [10], where we proposed
a reduced basis method to perform KL decompositions (factorization of correlation
functions) within a domain decomposition framework. Specifically, the stochastic
parametrization of κ is written as

κ̂px, θq “
D
ÿ

d“1

1Ωpdqpxqκ̂pdqpx,ηpdqq, 1Ωpdqpxq “

#

1 x P Ωpdq,

0 otherwise.
(33)
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In (33), 1Ωpdq is the indicator function of a subdomain and κ̂pdq is a local approximation
of κ over Ωpdq, which uses local random variables ηpdq whose number md will be shown
to be much less than for the global parametrization of κ over the whole domain Ω;
see [10].

One cannot express the elliptic equation solution u in a format similar to (33),
using the same local random vectors ηpdq as for the parametrization of κ. Indeed, the
stochastic solution u over a subdomain Ωpdq depends on the whole set of local random
variables tηpdq, d “ 1, . . . ,Du because of the elliptic nature of the problem. In other
words, it is not possible to expand u for x P Ωpdq in terms of the local random variables
ηpdq only. This prevents the direct construction of a local expansion for upx P Ωpdq, θq
using a low-dimensional polynomial basis constructed on the reduced set of md local
random variables in ηpdq. Alternatively, the construction of a global expansion of
upx P Ω, θq using the whole set of local variables would require a prohibitively large

PC basis, as it would involve nt “
řD

d“1md random dimensions. Note that the ηpdq

will be generally not independent, so it could be possible to reduce the global number
of random variables, but the approach would eventually remain at least as costly as
for a direct parametrization of κ as in (30). We thus consider a different approach in
the following, avoiding to seek a PC expansion of the solution.

3.2.2. Local PC expansion of the condensed problem. Although compu-
tational complexity reduction using direct local expansions of the solution cannot
be achieved, we propose to take advantage of the low dimensionality of the local
parametrization of κ to accelerate the MC sampling of the stochastic solution dis-
cussed in the previous section. The key idea supporting the proposed approach comes
from the following observation. Contrary to the solution over a subdomain, the con-
tribution to the condensed problem of the subdomain can be approximated solely in
terms of its local random variables ηpdq. Specifically, we can write

yrAspθq “
D
ÿ

d“1

yrAs
pdq
pθq «

D
ÿ

d“1

yrAs
pdq
pηpdqpθqq(34)

with similar expressions of the right-hand-side pbpθq. It suffices to remember that in

the deterministic case, the local condensed operator yrAs
pdq

and right-hand-side pb
pdq

can be determined solving local elliptic problems over Ωpdq with selected boundary
conditions. Our objective is therefore to construct local PC approximation as

yrAs
pdq
pηpdqpθqq « ĄrAs

pdq
pηpdqpθqq

.
“

ÿ

αPApdq

yrAs
pdq

α Ψαpη
pdqq.(35)

To this end, we rely on the decomposition of κ in (33), and we first consider the
stochastic problems which are the counterpart of (20); namely, for n P N pdq, we solve

”

A
pdq
in,in

ı

pηpdqqu
pdq
in,npη

pdqq “ ´

”

A
pdq
in,Γ

ı

pηpdqqepdqn .(36)

The stochastic matrices rA
pdq
in,inspη

pdqq and rA
pdq
in,Γspη

pdqq appearing in these problems
now have entries of the form

ˆ
Ωpdq

κ̂pdqpx,ηpdqq∇vnpxq ¨∇vn1pxqdx.
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Further, the solutions of the elementary problems (36) can be approximated on a local
PC basis through

u
pdq
in,npη

pdqq « ũ
pdq
in,npη

pdqq
.
“

ÿ

αPApdq

´

u
pdq
in,n

¯

α
Ψαpη

pdqq.

The local basis defined by the local multi-index set Apdq may be based on different
truncation strategies. In this work, we shall restrict ourselves to the simplest case of
total order truncation using a fixed polynomial order No ě 1 for all the subdomains;
the local basis cardinality Ppdq is then function of the number md and given by (32).
We stress that, as we expect md ! nt, Ppdq is much reduced because of its exponential
dependence on the number of random variables (md).

For the computation of the expansion coefficients pu
pdq
in,nqα, we shall rely on the

Galerkin approximation of (36). Specifically, we solve

ÿ

αPApdq

E
””

A
pdq
in,in

ı

ΨαΨβ

ı ´

u
pdq
in,n

¯

α
“ ´E

””

A
pdq
in,Γ

ı

Ψβ

ı

epdqn @β P Apdq.(37)

Note that the size of this linear problem is N
pdq
in ˆ Ppdq, stressing the importance of

achieving low-dimensional local parameterization. We also remark that only the right-

hand side of this system is changing for different n P N pdq
Γ . This can be exploited

to efficiently compute the set of local solutions, for instance, by prefactorizing the
linear system or employing an iterative solver designed to handle multiple right-hand
sides. Further, these sequences of problems are independent from a subdomain to
another, and so they can be carried out in parallel. Finally, from the PC expansion of

u
pdq
in,npη

pdqq, we derive the PC expansion of the columns I
pdq
n pηpdqq for the subdomain

contribution to the stochastic condensed operator (see (23)),

Ipdqn pηpdqq « Ĩpdqn pηpdqq “
ÿ

αPApdq

´

Ipdqn

¯

α
Ψαpη

pdqq,

using the Galerkin interpretation of the matrix-vector product:
´

Ipdqn

¯

α

.
“

ÿ

βPApdq

E
””

A
pdq
Γ,in

ı

ΨαΨβ

ı ´

u
pdq
in,n

¯

β
` E

””

A
pdq
Γ,Γ

ı

Ψα

ı

epdqn .(38)

A similar procedure is employed to derive the PC approximations of the stochastic
subdomain contributions to the condensed problem right-hand side, namely,

pb
pdq
pηdq « rb

pdq
pηdq “

ÿ

αPApdq

pb
pdq

α Ψαpη
pdqq.(39)

3.3. Sampling the stochastic condensed problem. At this point, we have
described a strategy to compute a composite PC expansion of the condensed problem.
These approximations can be used to generate approximate samples of the solution
à la MC. This task amounts to sampling jointly the local random variables ηpdq

of the subdomains as illustrated in the following example section. We shall denote

η
pdq
i “ ηpdqpθiq a sample of the local random variables; the corresponding sample of

the condensed problem solution uΓpθiq is defined through

ĄrAspθiquΓpθiq “ rbpθiq,(40)
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where

ĄrAspθiq “
D
ÿ

d“1

ÿ

αPApdq

yrAs
pdq

α Ψαpη
pdq
i q and rbpθiq “

D
ÿ

d“1

ÿ

αPApdq

pb
pdq

α Ψα

´

η
pdq
i

¯

.(41)

The key advantage of the proposed approach is the substitution of the exact condensed

operator with its composite PC approximation. As a result, applying ĄrAspθiq to a
given vector in an iterative solution method for (40) is much less costly than having
to solve local problems in the classical method. Indeed, forming the reduced problem
essentially amounts to evaluating polynomial expansions for the subdomains contribu-
tion, which can be made in parallel. Obviously, this comes at the cost of having first

to compute the PC approximation ĄrAs of yrAs in the preprocessing stage; however,
this overhead is factorized over the number of samples subsequently generated.

Note that when the sample uΓpθiq solving (40) is obtained, the local problems
can be independently solved for (and only for) the subdomains where the solution is
sought. Specifically, once uΓpθiq is computed, one can solve (independently)

”

A
pdq
in,in

ı

pη
pdq
i q u

pdq
in pθiq “ b

pdq
in ´

”

A
pdq
in,Γ

ı

pη
pdq
i q u

pdq
Γ pθiq(42)

to get the FE approximation of upx, θiq for x P Ωpdq.

3.4. MC algorithm and implementation. The proposed method thus in-
volves two distinct steps as summarized in Algorithm 1: a preprocessing stage where
the PC approximations of the condensed problem are constructed and the MC sam-
pling of the approximate solution.

Given a partition of Ω into D subdomains and associated local random variables
for the parametrization of κ, the preprocessing stage is dedicated to the construction
of the local approximations for the condensed problem. The treatments of different
subdomains are fully independent and can be trivially carried out in parallel (loop
starting at line 2). For each subdomain, the main computational effort is the solution
of a local stochastic elliptic problem (with multiple right-hand sides) whose size is

made reasonable by considering sufficiently many subdomains so that N
pdq
in and md

are sufficiently small. The memory requirement to store the local PC expansions

ĄrAs
pdq
pηpdqq and rb

pdq
pηpdqq is proportional to N

pdq
Γ ˆ N

pdq
Γ ˆ Ppdq and N

pdq
Γ ˆ Ppdq,

respectively.
In the sampling stage, starting at line 11, one generates joint samples ηpdqpθiq

and evaluates the subdomain contributions to the sample condensed problems. This
involves polynomial evaluations which can be carried out in parallel over distinct
subdomains (loop starting at line 14). The resulting sampled problem (40) can be
solved, for instance, by means of an iterative method without having to resort to
any local problem solve. When the sample uΓpθiq is computed (see line 16), one
can eventually recompute classically the solution over subdomains of interest (loop
starting at line 17). Again, these final solves over different subdomains can be carried
out in parallel.

The solver for the approximate condensed problem (40) can eventually be imple-
mented in parallel, and another advantage of the proposed approach is the possibility
of relying on a preconditioned iterative method. For instance, we show in the example
section how to take advantage of the manageable dimension and explicit representation
of the condensed operator to determine an effective preconditioner for the sampled

problems. This preconditioner is a carefully selected realization of ĄrAs, whose LU
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decomposition is computed at the preprocessing stage and subsequently employed in
the sampling stage to further accelerate the convergence of the iterative solves.

Algorithm 1. Proposed method.

Data: Partitioning of the domain, local parametrization of κ, polynomial
order No

Result: Produce M samples of the stochastic solution

1 Preprocessing stage: approximation of the condensed problem
2 for subdomain with index d “ 1, . . . ,D do
3 Set local PC basis

4 Compute PC expansion rb
pdq
pηpdqq

5 for boundary node n P N pdq
Γ do

6 Solve local stochastic problem (37)

7 Set PC expansion of nth column of ĄrAs
pdq
pηpdqq using (38)

8 end for

9 end for

10 MC sampling stage: Generate approximate samples of solution
11 for sample index i “ 1, . . . ,M do

12 Generate a random sample of ηi “ pη
p1q
i . . .η

pDq
i q

13 for subdomain with index d “ 1, . . . ,D do

14 Compute ĄrAs
pdq
pη
pdq
i q and rb

pdq
pη
pdq
i q using (41)

15 end for
16 Solve sampled condensed problem (40) for uΓpθiq
17 for subdomain with index d “ 1, . . . ,D do

18 Solve local problem (42) for the inner unknowns u
pdq
in

19 end for

20 end for

4. Example of stochastic elliptic problem. In the following sections, we
illustrate the application of the proposed methods to an elliptic equation with a
lognormal coefficient field. The problem settings are detailed in section 4.1. Next, we
provide various convergence studies in section 4.2 to investigate the behavior of the
method with respect to its principal numerical parameters, namely, the number of

subdomains, D, and the PC order, No, of the PC expansions of operators ĄrAs
pdq

and

right-hand-side rb
pdq

. In section 4.3, we focus on the case of random coefficient κ with
high variability to highlight the main mechanism driving the error in the method in
extreme problems. Finally, the efficiency and parallel implementation of the method
are discussed in section 5.

4.1. Test problem. We consider the elliptic problem (24) over a two-dimensional
domain consisting of the unit square, Ω “ p0, 1q2. We set fpxq “ 1 and adopt homo-
geneous boundary conditions as follows:

upxq “ 0 for x P BΩD and∇u ¨ n̂ “ 0 for x P BΩN ,(43)

where BΩD corresponds to the West, South, and East sides of the domain; BΩN

corresponds to the North side of the domain; and n̂ is the unit normal to the boundary
BΩN .
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For the random field κ, we assume that κ´κmin is a stationary lognormal process
such that

Gpx, θq
.
“ log pκpx, θq ´ κminq „ NpµGpxq, Cpx,x

1qq.

Here, we have denoted NpµG, Cq the Gaussian process with mean µG and covariance
function C, whereas κmin is a small positive constant ensuring the well-posedness of
the problem (in L2-sense). We shall classically a covariance function having a square
exponential decay,

Cpx,x1q “ σ2 exp
`

´}x´ x1}22{L
2
˘

,(44)

where L is the correlation length and σ2 the variance. In the following, we use L “ 0.1
unless otherwise indicated.

For the local parametrization of the process, we consider the local KL expansion
of G over each of the subdomain. Denoting Gpdq the restriction of G over Ωpdq, we
have

Gpdqpx, θq “ µGpxq `
ÿ

ką1

b

λ
pdq
k φ

pdq
k pxqη

pdq
k pθq,(45)

where the λ
pdq
k and φ

pdq
k are the (dominant) eigenvalues and normalized eigenfunctions

of the covariance satisfying

ˆ
Ωpdq

Cpx,x1qφ
pdq
k px1qdx1 “ λ

pdq
k φ

pdq
k pxq.(46)

It is a standard result that the random variables in the KL expansion above are

independent standard Gaussian random variables, that is, η
pdq
k „ Np0, 1q. Obviously,

the KL expansion must be truncated; we shall truncate (45) to the md first dominant
(largest eigenvalues); accordingly, we have

Gpdqpx, θq « Ĝpdqpx,ηpdqpθqq “ µGpxq `
md
ÿ

k“1

b

λ
pdq
k φ

pdq
k pxqη

pdq
k pθq(47)

and where md is selected from the following criteria (see [10]):

md
ÿ

k“1

λ
pdq
k ě p1´ εGqσ

2 |Ω
pdq|

|Ω|
.(48)

Here, εG ă 1 is a small positive constant measuring the approximation error in the
L2-sense and |Ω| (resp., |Ω|pdq) the volume of the domain Ω (resp., Ωpdq). Extending
to zero the eigenfunctions outside of their respective supports Ωd, we end up with

κ « κ̂ “ κmin `

D
ÿ

d“1

1Ωpdqpxqκ̂pdqpx,ηpdqq, κ̂pdqpx,ηpdqq “ exp
”

Ĝpdqpx,ηpdqq
ı

,

(49)

which has a structure similar to (33).
For the MC solution of the problem, we will have to sample jointly the ηpdq of

all subdomains. Since we know that these random variables are centered standard
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Gaussian, we must provide their correlation structure. In [10], we have shown that
the correlation structure is given by

b

λ
pdq
l λ

pd1q

l1 E
”

η
pdq
l η

pd1
q

l1

ı

“

¨
ΩpdqˆΩpd1q

φ
pdq
l pxqφ

pd1
q

l1 px1qCpx,x1qdxdx1.(50)

In particular, one observes that by construction, the η
pdq
l of a subdomain are uncor-

related. Sampling the whole set of η “ tηpdq, d “ 1, . . . ,Du can be achieved by stan-
dard techniques, e.g., decomposing the covariance matrix. Specifically, let us denote
nt “

řD
d“1md the total number of random variables and rΣs P Rntˆnt the covariance

matrix with entries Erηpdql η
pd1
q

l1 s given by (50). We first compute the Cholesky decom-
position of the covariance matrix, rΣs “ rLsrLsT , and define subsequently η

.
“ rLsz,

where z P Rnt is a vector of uncorrelated standard Gaussian random variables.
As an illustration of the parametrization of the random field κ, we provide in

the top row of Figure 1 three realizations for µG “ 0 and an increasing value of
σ2 of G from left to right. In these examples, the number of subdomains is set
to D “ 480, and the boundaries of the subdomains are outlined in the plot. With
L “ 0.1 and εG “ 0.01, a total of nt “ 178 would be necessary in a global construction.

σ2 “ 0.05 σ2 “ 0.20 σ2 “ 0.50

κ
px
,η

iq
u
px
,η

iq
´
E
ru
px
,¨
qs

û
px
,η

iq
´
u
px
,η

iq

Fig. 1. Realizations of κ (top row); deviation to the mean, u ´ E rus, of the direct solution
(middle row); and differences between DD-PC and direct solutions (bottom row). The columns
correspond to different realizations of κ drawn at random using Gaussian fields with increasing
variance: σ2 “ 0.05, 0.2, and 0.5 from left to right. The DD-PC solutions use No “ 2 and D “ 480
(the subdomains partition is shown in all the figures).D
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Instead, one only needs md “ 3 random variables per subdomain for the same level
of approximation error, εG. The plots show the effect of varying σ2 with its direct
impact on the range of variability for κ, which is roughly 10 times lager for σ2 “ 0.5
compared to the case with σ2 “ 0.05. The plots also illustrate the spatial structure of
the fields with multiple local minima and maxima due to the small correlation length
and the exponentiation effects that emphasize the maxima and stiffen the gradients.

4.2. Validation of the method. Unless specified otherwise, the computation
of this section uses L “ 0.1 and an FE mesh having Ne “ 16,441 triangular quadratic
elements and Nn “ 32,747 unknowns.

4.2.1. Solution samples. We first verify that the proposed method with PC
approximation of the condensed problem approximates the MC samples obtained
with the original approach described in section 2.2.2. To this extent, we refer to our
approach as the DD-PC method and denote ûpηiq a corresponding FE solution sample,
while upηiq is an FE solution sample for the direct-sampling method. For fairness,
when comparing two solution samples of û and u, we use the same approximation of
the random field κ̂pηiq, so their difference u´ û is solely due to the PC approximation
error of the condensed problem. In practice, we sample the random variables to get
a realizations ηi and compute the corresponding realizations κ̂pηiq using (49).

First, we look at three different realizations of κpηiq corresponding to different
variances for the underlying Gaussian process G. The realizations of κ are shown in
the top row of Figure 1. The second row of Figure 1 shows the difference between
upηiq and the corresponding mean, E rus, which enables us to highlight the complexity
and length-scales in the solution samples. (The means, E rus, are depicted in the top
row of Figure 2.) Finally, the third row of Figure 1 depicts the differences between
the realizations computed with the DD-PC and the direct method. Here, the DD-PC
solutions are computed using PC approximations with order No “ 2 for all the three
variances of G.

Focusing on the case with lowest variance, σ2 “ 0.05 (left column), the realization
upθiq is seen to be rather smooth, with differences less than 6ˆ10´4 between u and û.
As σ2 is increased to 0.20 (center column), the realization has now steeper gradients,
whereas the error level is now as high as 2 ˆ 10´3, roughly 1% of the maximum of
E rus. For the largest variance σ2 “ 0.50, the solution presents even steeper gradients,
and the peak error is as high as 10% of the maximum of E rus. These observations
are expected because with increasing σ2, a higher PC order No would be needed to
achieve a certain relative accuracy in the local condensed problem. This is verified in
the following.

4.2.2. Convergence with PC order. We now analyze the behavior of the
DD-PC method, starting from the MC error in the estimation of the mean of the FE
solution, namely, E rûs ´ E rus. These errors are reported in Figure 2; shown are the
mean fields (E rus, top row) and error fields for two expansion orders (No “ 2 in the
middle row and No “ 6 in the bottom row) for the DD-PP method and the three
variances σ2 as before. Again, a total of D “ 480 subdomains is used. Focusing first
on the lower-order case, No “ 2, we observe that the error increases with σ2, with
higher values in Ω, where E rus is larger. This indicates that the DD-PC method is
biased. Note also that in the case with σ2 “ 0.05, when the error on the mean is
the lowest, the field E rûs ´ E rus appears noisy. This is due to the finite number of
samples used in the Monte Carlo estimate of the expectations (M “ 500,000) whichD
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σ2 “ 0.05 σ2 “ 0.20 σ2 “ 0.50

E
ru
px
,¨
qs

E
rû
px
,¨
qs
´
E
ru
px
,¨
qs

N
o
“

2
N

o
“

6

Fig. 2. Mean fields E rupx, ¨qs (top row) and DD-PC error on the mean E rûpx, ¨qs ´ E rupx, ¨qs
for No “ 3 (middle row) and No “ 3 (bottom row) and three values of σ2, as indicated, from left to
right. The computations use M “ 500,000 MC samples to estimate the expectations and D “ 480
subdomains.

induces a sampling error that is significant compared to the true (M “ 8) value of
error on the mean solution. Increasing the PC order to No “ 6 is seen to reduce by
several orders of magnitude the error in mean of the DD-PC method. In fact, with
No “ 6, the error is so low that even for the largest σ2, the MC sampling error remains
significant and visible, whereas for the smallest σ2, it is completely dominant.

To better understand the impact of No on the bias in the DD-PC method, we
define the normalized L2 error on the mean, εmean, according to

ε2mean “
}E rûs ´ E rus}2L2pΩq

}E rus}2L2pΩq

, }u}L2pΩq
.
“

ˆ
Ω

|upxq|2dx.(51)

In practice, the mean solutions E rûs and E rus are estimated by their empirical av-
erages using M MC samples. We report in Figure 3 the evolution with M of the
estimate of εmean for the different values of No and σ2. We observe that for small
values of M , the error norm εmean is overestimated because of the sampling error. The
sampling error decreases as M increases, and for M large enough, we see that εmean

converges to a nonzero value, reflecting the bias in the DD-PC method. Moreover, as
we saw before, the bias depends on both σ and No. Specifically, higher values of σ
result in higher errors on the mean, and higher values of No increase the accuracy of
the PC expansion and reduce the bias. An important remark is that for high poly-
nomial orders, the sampling error will be dominant unless a large number of samples

D
ow

nl
oa

de
d 

03
/0

1/
19

 to
 1

09
.1

71
.1

37
.2

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DOMAIN DECOMPOSITION FOR MONTE CARLO METHOD C565

is used in estimating any desired statistic. Thus, there is no point in using a large
polynomial order for a small sample size.

The convergence with No of the DD-PC method is not restricted to the mean
solution but can be expected for other quantities of interest derived from u, albeit
possibly with different rates. For instance, we report in Figure 4 the convergence of
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(a) Error on the mean, No “ 2
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(b) Error on the mean, No “ 6

Fig. 3. Monte Carlo estimates of the norm of the error on the mean εmean as a function of
the number of MC samples M for different σ2 as indicated and PC order No “ 2 (left) and No “ 6
(right).

σ2 “ 0.05 σ2 “ 0.20 σ2 “ 0.50

S
td
rû
px
,¨
qs

S
td
rû
px
,¨
qs
´

S
td
ru
px
,¨
qs

N
o
“

2
N

o
“

6

Fig. 4. Standard deviation fields Std rupx, ¨qs (top row) and DD-PC error in the standard
deviation Std rûpx, ¨qs ´ Std rupx, ¨qs for No “ 3 (middle row) and No “ 3 (bottom row) and three
values of σ2, as indicated, from left to right. The computations use M “ 500,000 MC samples to
estimate the expectations and D “ 480 subdomains.
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the error in the standard deviation of u, namely, Std rûpxqs ´ Std rupxqs for No “ 2
and No “ 6, and the three values of the variance σ2. The plots show a similar trend as
for the mean solution, although the spatial structure of the standard deviation error
appears to depend more heavily on No.

4.3. L2-error norm. We now consider the more generic error measure as the
full (or stochastic) L2-norm of the difference ûpx, θq ´ upx, θq and define the relative
stochastic error norm as

ε2u “
E
”

}û´ u}2L2pΩq

ı

E
”

}u}2L2pΩq

ı .(52)

Figure 5 reports εu as a function of the PC order No. Shown are plots for different
values of σ2 and curves for different D . The relative error on the mean, εmean, is also
shown for comparison. For σ2 “ 0.05 (left plot), we notice that the behavior of both
errors is very similar, decaying monotonically with No, with the relative stochastic
error higher than the relative error on the mean. Further, the number of subdomains
D is seen to have negligible effect on the two errors. These observations are in sharp
contrast with the high-variability case, σ2 “ 0.5, shown in the right plot of Figure 5,
where the error decay with No is no longer monotonic over the reported range. In
fact, the convergence curves highlight an even-odd effect with a smaller error for even
order No “ 2n than for the next odd order No “ 2n ` 1. In addition, the relative
stochastic error reaches dramatically large levels for odd values of No and has much
more severe and nontrivial dependences on D. We should remark that the case with
σ2 “ 0.5 leads to a very high variability in κ and can be considered as an extreme case.
In the following, we proceed to analyze the stochastic error in this large-variability
case.

To better understand the error mechanism, we first reduce the computational
cost of this analysis, namely, by increasing the correlation length of G to L “ 1 but
keeping σ2 “ 0.5. The increased L allows us to consider a coarser FE mesh (with
Ne “ 1,630 elements and Nn “ 3,204 unknowns) owing to the increased length scales
in the solution u. However, this change does not affect the odd-even order effects just
discussed, as shown by the convergence curves reported in Figure 6, which are similar
to the previous case (Figure 5, right plot). Note that due to the coarser nature of the
mesh, we also considered different values for the number of subdomains; D “ 120,
240, and 480 instead of D “ 240, 480, and 960.
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“ 0.05
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(b) σ2
“ 0.5

Fig. 5. Relative stochastic error εu and relative error on the mean εm as functions of the PC
order No for different values of D as indicated and σ2 “ 0.05 (left plot) and 0.5 (right plot).
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Fig. 6. Relative stochastic error εu and relative norm of error on the mean εm as functions
of the PC order No for different values of D as indicated. The random field G uses σ2 “ 0.5 with
L “ 1.

For the purpose of the analysis, we compute 100,000 samples of the solutions ûpηiq

and upηiq, using the two approaches, and retrieve the corresponding samples of error
norm, }û ´ u}L2pΩq; norm of the DD-PC samples solution, }ûpηiq}L2pΩq; Frobenius

norm of the error on the condensed problem operator, }ĄrAspηiq ´
yrAspηiq}F ; and

finally condition number of its PC approximation, cond ĄrAspηiq. These samples are
used to estimate the statistics of these quantities, which are summarized in Figure 7
using (normalized) histograms in log-log scale, contrasting the cases of No “ 2, 3, and
9 for the PC approximation of the condensed problem.

First, the statistics of the error norms }û ´ u}, depicted in Figure 7(a), are seen
to be more spread for No “ 3 than for No “ 2 with a much longer tail toward the
high error side: Extreme samples for No “ 3 are standing more than three orders of
magnitude away from the extreme samples for No “ 2. The presence of very large
error samples induces the average-error behavior shown in Figure 6, even though the
mode of the histogram for No “ 3 is at a lower error level compared to the mode for
No “ 2. On the contrary, the error distribution for even order No “ 2 does not exhibit
a long tail toward higher error values. In addition, increasing the PC order to No “ 9
results in a distribution of the error that remains quite broad (in the logscale) with
a broad right tail but shifted to the low error values compared to No “ 3. Overall,

-8 -6 -4 -2 0 2 4

10 -3

10 -2

10 -1

10 0
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 = 2 N

o
 = 3 N

o
 = 9

(a) log10 }u´ û}L2pΩq

-4 -3 -2 -1 0 1 2 3

10 -3

10 -2
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 = 3 N

o
 = 9

(b) log10 }
yrAs ´ĄrAs}F

2 3 4 5 6 7

10 -3

10 -2

10 -1

10 0

10 1

N
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 = 2 N

o
 = 3 N

o
 = 9

(c) log10 cond
´

ĄrAs
¯

Fig. 7. Normalized histograms of the error norm }u´ û}L2pΩq (left), of the approximation

error on condensed operator }yrAs ´ ĄrAs}F (center), and of the condition number of the approximate

system cond
´

ĄrAs
¯

(right) for PC orders No “ 2, 3, 9. Case of G with σ2 “ 0.5 and L “ 1.
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the error samples for No “ 9 remain lower than for No “ 2. One can conclude that
the large stochastic error for odd orders is caused by a fraction of samples having
abnormally very high error compared to their median error, but with a probability
that decreases with increasing order.

Comparing the statistics of the error on the condensed operator }ĄrAs ´yrAs}F at
different orders, shown in Figure 7(b), we observe a monotonic shift of the histograms
when No increases with similar tails for both odd and even orders. This is expected
as one globally improves the PC approximation with increasing No. This distribution
of the operator error must be contrasted with the statistics of the condensed operator

condition number cond ĄrAs reported in Figure 7(c): The histogram for No “ 3 is
seen to exceed by several orders of magnitude the highest values for No “ 2 and
No “ 9. In fact, the histogram for No “ 3 reveals samples with poorly conditioned
systems. Since the error on the operator itself behaves well, one can suspect the PC

approximation of ĄrAs to induce error on the lowest part of the spectrum, that is, the

smallest eigenvalues and eigenfunctions of yrAs (recall that yrAs is symmetric positive
definite).

To evidence the role of the condition number and error on the lowest eigenvalues

of ĄrAs on the error, we present in Figure 8 samples of the condition number of ĄrAspηiq

as a function of the corresponding samples of the error }u´ û}L2pΩq for different PC
orders No. The sample points have also been colored by the sign of the smallest

eigenvalue of ĄrAspηiq: in blue for a positive value and in green for a negative value.
Focusing first in the case No “ 2 reported in Figure 8(a), we observe that the error
tends to be correlated with the condition number of the system. In particular, the

minimal error increases when cond ĄrAs increases. The case of No “ 3 in Figure 8(b)
appears to have an even more pronounced correlation of the error with the condition
number with additional events associated to large condition number and high error
level. The color clearly highlights the fact that the highest errors and condition num-

ber events are associated with a loss of positivity in ĄrAs. In fact, the error distribution

is somehow bimodal, with one or the other mode depending highly on ĄrAs having neg-
ative eigenvalues. On the contrary, we report no sample with negative eigenvalues in
our experiments for No “ 2 (and also for No “ 4, 6, and 8; not shown for brevity).
Further, increasing the order to No “ 5 and No “ 9 in Figure 8(c) and 8(d), we
observe the reduction of the probability of loss of positivity events (which is not at
all observed in the whole sample set with No “ 9) and correspondingly a reduction
of the resulting solution error. As a closing remark, detection of the loss of positivity

in the samples of ĄrAs would be a good indicator of an insufficient PC order in the
approximation. In our experiments, we found that checking for the positivity of the

diagonal elements of ĄrAspηiq, a necessary condition for the positivity of the sample,
was sufficient for this purpose.

5. Performance analysis. In section 5.1, we provide a brief analysis of the
computational complexity and memory requirements of the DD-PC method. A few
alternative parallel implementations are discussed in section 5.2 and subsequently
compared in section 5.3.

5.1. Complexity analysis. As highlighted in Algorithm 1, the proposed method
has two distinct stages: a preprocessing stage during which the PC approximation of
the condensed problem is computed and a sampling stage where approximate samples
of the solution are computed.
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(a) No “ 2 (b) No “ 3

(c) No “ 5 (d) No “ 9

Fig. 8. Samples of the error in the solution }u´ û}L2pΩq as a function of the condition number

cond ĄrAs. The samples are colored according to the sign of the smallest eigenvalue of ĄrAs. Different
PC orders as indicated.

For the first stage, one has to solve on each subdomain a stochastic problem for

a set of N
pdq
Γ distinct boundary conditions; this discretized stochastic problem has

N
pdq
in unknowns expanded on a Ppdq dimensional PC basis. Eventually, the storage

of the PC approximation for the subdomain contributions ĄrAs
pdq

and rb
pdq

has a

memory requirement of N
pdq
Γ ˆ pN

pdq
Γ ` 1q ˆ Ppdq. Clearly, N

pdq
in , N

pdq
Γ , and Ppdq are

the parameters driving the computational complexity of the preprocessing stage on a
subdomain, and we illustrate their evolution when one considers an increasing number
D of subdomains to partition a fixed mesh (Ne “ 163,272) on the previous problem
with L “ 0.1, σ2 “ 0.2, and εG “ 0.01. Note that the underlying unstructured mesh
is essentially isotropic with uniform refinement. The Metis software [19] is employed
here to partition the domain; several examples are shown in Figure 9.

The results are reported in Table 1. The second column shows the evolution with
D of the condensed problem dimension NΓ. The third and fourth columns report the

corresponding values of N
pdq
Γ and N

pdq
in (rounded averages over the set of subdomains,
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(a) D “ 15. (b) D “ 60. (c) D “ 960.

Fig. 9. Partitions of the computational mesh into different numbers of subdomains D as indicated.

Table 1
Evolutions with the number of subdomains D of the dimension of the condensed problem (NΓ),

(averaged) numbers of local unknowns (N
pdq
Γ and N

pdq
in ), local random variables (md), and local PC

basis dimension Ppdq for No “ 2 and 6.

D NΓ N
pdq
Γ N

pdq
in

md
Ppdq

No “ 2 No “ 6
8 2,233 752˘ 93 40,477˘ 91 28.0˘ 0.0 p4.35˘ 0.00q ˆ 102 p1.34˘ 0.00q ˆ 106

15 3,337 549˘ 66 21,514˘ 62 17.0˘ 0.0 p1.71˘ 0.00q ˆ 102 p1.01˘ 0.00q ˆ 105

30 5,258 404˘ 48 10,693˘ 41 10.7˘ 0.4 p7.48˘ 0.53q ˆ 101 p1.12˘ 0.19q ˆ 104

60 7,582 280˘ 26 5,308˘ 23 7.0˘ 0.2 p3.57˘ 0.14q ˆ 101 p1.70˘ 0.14q ˆ 103

120 11,205 201˘ 17 2,624˘ 14 5.0˘ 0.0 p2.10˘ 0.00q ˆ 101 p4.62˘ 0.00q ˆ 102

240 15,921 141˘ 11 1,292˘ 9 3.2˘ 0.4 p1.11˘ 0.21q ˆ 101 p1.11˘ 0.52q ˆ 102

480 22,726 100˘ 8 632˘ 6 3.0˘ 0.0 p1.00˘ 0.00q ˆ 101 p8.40˘ 0.00q ˆ 101

960 32,618 72˘ 6 306˘ 4 2.8˘ 0.4 p9.23˘ 1.58q ˆ 100 p7.32˘ 2.21q ˆ 101

1920 46,047 51˘ 5 146˘ 3 2.0˘ 0.0 p6.00˘ 0.09q ˆ 100 p2.80˘ 0.13q ˆ 101

with ˘ RMS values). It is seen that while N
pdq
in „ 1{D, the decay of N

pdq
Γ is slower,

denoting the number of interfaces increasing with D (see Figure 9). Similarly, the
number of local random variables md decreases at a sublinear rate with respect to
1{D and would tend asymptotically to 1 for D Ñ Ne (see the discussion in [10]). The
decay behavior of md induces an extremely fast decay rate of the local polynomial
basis dimensions Ppdq with D as reported in the last two rows of Table 1, corresponding
to PC degrees No “ 2 and 6, respectively. For instance, when No “ 6, the local PC
basis dimension is 10,000 times smaller for D “ 480 than for D “ 8. However, when
D becomes too large, md levels off, and so does the dimension of the local PC bases.

The results in Table 1 enable us to quantify the reduction in the local stochastic

problem complexity and memory requirements to store ĄrAs and rb. This is illustrated
in Figure 10, which shows the evolution of the local complexity measured by the (av-

eraged) value of pN
pdq
in q

2ˆPpdq reported for No “ 2 and 6 (left plot). We do not report
here the consolidated computational complexity or the sum of local complexities, as
the solves at the preprocessing stage are fully independent over the subdomains and
can be carried out in parallel. Instead, we remark that in the case of No “ 6, small
values of D yield too many local variables md with large local PC bases and prohibitive
complexities: Increasing D makes the local solves tractable. Similarly, increasing D
reduces the memory requirements, for storing each local contribution to the condensed
operator, as depicted in the right plot of Figure 10. The plot shows both the local

D
ow

nl
oa

de
d 

03
/0

1/
19

 to
 1

09
.1

71
.1

37
.2

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DOMAIN DECOMPOSITION FOR MONTE CARLO METHOD C571

���

���

���

����

����

����

����

� �� �� �� ��� ��� ��� ��� ����

�
�
�
�
��
�
�
�
�
��
�
���

�

����
����

���

���

���

����

����

����

� �� �� �� ��� ��� ��� ��� ����

�
�
�
�
��

�
�
�
�
�
��
�
�
�
�
�

�

������������
�������������
������������
�������������

Fig. 10. Local complexity (left plot) and local and global memory requirements (right plot) as
a function of the number of subdomains D and for two PC degrees No “ 2 and No “ 6. Note that
both plots use a log-log scale.

memory requirement, measured by (averaged) pN
pdq
Γ q2ˆPpdq, and the global memory

requirement, defined as the sum of the local ones. It is seen that the local require-
ments have essentially the same evolution with D as the complexity. However, the
reduction in the global requirement tends to level off as D becomes large, as it could

be expected from the behavior of N
pdq
Γ and md shown in Table 1.

These findings support the use of the largest possible number of subdomains to
reduce the computational complexity and memory requirements of the preprocessing
stage. However, we might not want to make D as large as possible because NΓ, the
size of the condensed problem, increases as D increases (see the second column of
Table 1). The cost of solving the reduced problem at the sampling stage, therefore,
increases as the number of subdomains increases. Thus, as it is typically the case for
methods involving domain decomposition, the best value for D will depend on the
specific problem at hand and the available computational resources.

5.2. Implementation details. In this section, we discuss choices for the design
and implementation of sampling stage algorithms. As described in section 3.4 and
shown in Algorithm 1, the computation of a sample with index i, in the loop starting
at line 11 (Algorithm 1), involves four main steps. For a given realization, i.e., for
one particular index i, these steps can be summarized as follows. First, generate a
joint random sample of the local random variables (line 12); second, evaluate the
subdomain contributions to the condensed problem (40) (line 14), which amounts to
evaluating polynomials; third, solve the sample domain decomposition problem (40)
(line 16); and finally, if desired, recompute the solution inside selected subdomains
(line 17). The parallelization of the first and second steps is trivial, as is the solution of
the local problems in the fourth stage when the boundary data are known; see (42).
For the latter step, our PC approach can even bypass the final local solves if the

local PC approximations ũ
pdq
in,n of the elementary solutions u

pdq
in,n can be stored (see

section 3.2.2).
In contrast, different strategies can be envisioned to solve the sampled condensed

problem, as further discussed below.
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5.2.1. Strategies for solving the condensed problem. Our PC-based sam-
pling approach aims at accelerating direct MC sampling. As discussed earlier in
sections 2.1.1 and 2.2.2, such direct MC methods are usually based on matrix-free
iterative solvers where the realizations of the condensed operator and corresponding
right-hand side in (28) are never explicitly assembled. Instead, using a CG algorithm,
the application of the condensed operator to successive conjugate vectors is implicitly
performed in a matrix-free manner by computing residuals from local PDE solutions
at the subdomain level. This approach will be referred to as Dir-loc-CG and will
serve as a reference. It will be compared with different PC-based strategies, also rely-
ing on the CG method to solve the condensed problems and using the same stopping
criterion in order to ensure the fairness of the comparisons.

In our PC-based approach, we investigate two main strategies for solving of the
condensed problem (40). The first strategy mimics the reference Dir-loc-CG above
in that it never assembles the full condensed problem (40). Inside the CG iterations,
the subdomain contribution to the residual of the successive conjugate vectors is

computed locally by matrix multiplication with the sample value of ĄrAs
pdq

instead of
solving a local PDE problem. This approach will be referred to as PC-loc-(P)CG,
where the optional P indicates whether a preconditioner is involved in the CG method
(see section 5.2.3 below). The second strategy, on the contrary, is based on assembling
for each sample the corresponding full condensed operator and right-hand side. The
condensed problem (40) is still solved using CG, leading to the approach referred to
as PC-glo-(P)CG in the following. Note that PC-loc-(P)CG and PC-glo-(P)CG are
equivalent, as they solve the same problem, but are expected to have different parallel
efficiencies, as they will have different communication patterns as discussed in the
following.

5.2.2. Parallelism. For PC-loc-(P)CG, the realizations are processed sequen-
tially, as in the reference method. For each sample, the solution of the condensed
problem is performed in parallel, in a fashion following closely the Dir-loc-CG strat-
egy. Specifically, each MPI process is in charge of computing the local contributions
to the residual of the set of subdomains handled by the process. We will refer to this
strategy as parallelism across subdomains because the workload is distributed among
the MPI processes according to the spatial domain decomposition. An overview of
this parallel implementation is given in the schematic Algorithm 2.

Regarding PC-glo-(P)CG, a parallelism across samples is more appropriate be-
cause the global condensed problem is explicitly assembled. In this strategy, the full
condensed operator and right-hand side are assembled in batches of samples, each
batch being processed in parallel. For the sake of simplicity and without loss of gen-
erality, we assume that a batch has as many samples as the number of MPI processes,
NMPI. In a given batch, the first and second steps are performed sequentially for the
NMPI samples, parallelizing the tasks across the subdomains for each sample element of
the batch. Each of the NMPI samples of a batch corresponds to a distinct realization of
the condensed problem with is globally assembled, through collective communications,
on its dedicated MPI process. Once all the samples of the batch have been processed
this way, each MPI process owns one particular sample of the condensed problem
and can then proceed with its solution. This amounts to a parallelism across sam-
ples in the sense that the current batch of NMPI samples has been distributed among
the NMPI MPI processes and are solved independently. An overview of this parallel
implementation is given in the schematic Algorithm 3. Optionally, as for the otherD
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Algorithm 2. Schematic algorithm illustrating the parallelism across sub-
domains for strategy PC-loc-(P)CG.

1 for sample index i “ 1, . . . ,M do // [SEQUENTIAL LOOP]

2 Generate a random sample of ηi “ pη
p1q
i . . .η

pDq
i q

3 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]

4 Compute ĄrAs
pdq
pη
pdq
i q and rb

pdq
pη
pdq
i q using (41)

5 end for

// PARALLEL solve (except preconditioning)

6 Solve sampled condensed problem (40) for uΓpθiq using (local) CG
iterations

7 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]

8 Solve local problem (42) for the inner unknowns u
pdq
in

9 end for

10 end for

Algorithm 3. Schematic algorithm showing the mixed subdomains and
samples parallel processing for the strategy PC-glo-(P)CG.

1 iÐ 0
// While the desired number of samples has not been reached

2 while i ăM do // [SEQUENTIAL LOOP]

// Start a new batch

3 for process index p “ 1, . . . ,NMPI do // [SEQUENTIAL LOOP]

4 iÐ i` 1

5 Generate a random sample of ηi “ pη
p1q
i . . .η

pDq
i q

6 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]

// Each process handles Dp « D{NMPI subdomains

7 Compute ĄrAs
pdq
pη
pdq
i q and rb

pdq
pη
pdq
i q using (41)

8 end for

9 Assemble and store the global ĄrAspθiq and rbpθiq on process p

10 end for

// Each process now owns one global realization of the

condensed problem

11 for process index p “ 1, . . . ,NMPI do // [PARALLEL LOOP]

// Each process handles 1 realization

12 Solve sampled condensed problem (40) using (global) CG

13 end for

// Optional

14 for subdomain with index d “ 1, . . . ,D do // [PARALLEL LOOP]

15 Solve local problem (42) for the inner unknowns u
pdq
in

16 end for

17 end whileD
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strategies, the full solutions (step 4) may be retrieved by final local solves using the
solutions of the condensed problem, returning to a parallelization across subdomains.

5.2.3. Preconditioning. One advantage of having an expression of the con-
densed operator is the possibility to propose a preconditioner for the CG solver.
Classical domain decomposition methods can be preconditioned, in particular, using
two-level strategies [13, 34]. Here, we rely on an alternative preconditioner based on

the condensed operator’s expectation, EryrAss, defined as

ĚrAs
.
“ E

”

yrAs
ı

«

D
ÿ

d“1

E
„

ĄrAs
pdq



“

D
ÿ

d“1

ĄrAs
pdq

0 ,(53)

where 0 P Nmd is the multi-index of the constant polynomial. Hereafter, ĚrAs will be

referred to as the mean condensed operator. It is expected that ĚrAs
´1

ĄrAs remains
close to the identity for all samples so that the mean operator can be used as a
preconditioner to the full residual iterate appearing in the CG algorithms. In practice,
the LU decomposition of ĚrAs is once precomputed prior to the sampling stage and
subsequently used to precondition the CG iterations when solving the condensed
problem for different samples. Note that for the (PC-loc-PCG) strategy, where the
full operator is not assembled, further gain may be obtained by parallelizing the
application of the preconditioner, although this direction is not further investigated
here.

5.3. Computational behavior. The analysis of the computational behavior
of the method is broken down into two parts. First, we investigate the scalability
of the preprocessing stage. Second, we discuss the computational behavior of the
sampling stage, for the different solving strategies described above, and compare it
with the behavior of the classical matrix-free MC sampling approach. Unless specified
otherwise, the computations of this section use σ2 “ 0.2, L “ 0.1, D “ 512, and
No “ 2.

5.3.1. Preprocessing stage. We characterize the scalability with the number
NMPI of MPI processes of the preprocessing stage by the parallel efficiency E, ex-
pressed as a percentage:

EpNMPIq
.
“ 100

Tref

NMPI T pNMPIq
,(54)

where Tref and T pNMPIq are the measured CPU times of the task’s execution for a
reference case and the execution using NMPI processes. For the reference, we take the
smallest number of processes tested, NMPI “ 16, and use Tref “ 16T p16q, assuming a
perfect parallel efficiency from 1 to 16 processes.

Figure 11 shows the parallel efficiency of the preprocessing stage for three meshes
of increasing size. In Figure 11(a), we observe that the parallel efficiency slightly
decreases with NMPI but remains above 80% on 512 processes for all three meshes.
It shows that the preprocessing stage is scaling decently, even using a naive, static,
a priori load balancing strategy. The moderate loss of efficiency can be explained by
processes waiting for each other to get to a certain point, caused by load imbalance.
Although the preprocessing stage involves no communication (either point-to-point
or collective) between processes, the preprocessing stage ends when all processes have
terminated, leading to a worst-case idle-time scenario. In addition, each process p
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(b) Ne “ 82,213.

Fig. 11. Parallel efficiency EpNMPIq of the preprocessing stage (see (54)), for different meshes
(Figure 11(a)) and different PC degrees (Figure 11(b)).

handles a certain number of subdomains whose indices d are collected in Ip. Note
that in the present tests, we used numbers of processes such that D “ 512 is al-
ways a multiple of NMPI and that the processes handle exactly the same number of
subdomains, namely, D{NMPI. However, the subdomains support FE meshes having
different sizes as well as possibly different numbers of local random variables md; see
Table 1. As a consequence, the number and size of the local Galerkin problems that
a process p has to solve may change slightly from one process to another. As NMPI

increases, fewer subdomains are handled by a process, down to the case of 512 pro-
cesses, each handling one single subdomain, tending to increase the load imbalance
between processes with a degradation of the parallel efficiency. It is clear than more
advanced partitioning and load balancing techniques can be employed to improve the
scaling properties of this stage. As a side note, we point out that using carefully
designed regular structured meshes should theoretically lead to quasi-ideal scaling.
Finally, we observe in Figure 11(b) that the parallel efficiency is not affected by the
PC degree No.

5.3.2. Sampling stage. We now investigate the computational behavior of
the sampling stage. In particular, we compare the different strategies discussed in
section 5.2.

Figure 12 reports the CPU times needed to generate a single sample of the con-
densed problem solution as a function of NMPI. These measurements only include the
first three steps of the sampling procedure, leaving aside the final calculation of the
full solution over the subdomains. Moreover, for PC-glo-PCG and a parallelization
over samples, we consider a batch of size M “ D “ 512 and report the average com-
putational time (divided by M) for a fair comparison. In addition, the CPU times
are scaled so that the reported time using PC-glo-PCG on 16 processes equals 1.

In Figure 12(a), corresponding to a spatial mesh with Ne “ 163,272 quadratic
FEs, we observe that the strategy PC-loc-CG outperforms the reference approach
Dir-loc-CG with an acceleration factor of about 3.5 on 16 processes. As the number
of processes increases, the two approaches lose parallel efficiency and seem to converge
to the same CPU time. This trend can be explained by the collective data communi-
cation which needs to be performed at each CG iteration. This communication time
does not decrease as NMPI increases, while on the contrary, the workload of the pro-
cesses for solving local problems (in Dir-loc-CG) or performing local matrix-vector
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(b) Ne “ 327,334.

Fig. 12. Scaled CPU times, to generate one sample, as a function of the number of MPI
processes NMPI. The dashed lines represent ideal parallel scaling.

products (in PC-loc-CG) decreases due to a good parallel scaling of these computa-
tions. Eventually, the communication cost becomes comparable to the computational
cost of the rest of the CG algorithm (e.g., dot products), which scale poorly, and conse-
quently the overall sampling cost converges to this flat cost. Concerning PC-loc-PCG,
the effect of the mean preconditioner can be appreciated comparing its computational
time with the PC-loc-CG strategy: For 16 processes, the CPU time is reduced by an-
other factor of about 3.5. This reduction is due to the improved convergence of the
iterative solver, allowing the saving of many CG iterations. However, the overall
cost of PC-loc-PCG is quickly dominated by the application of the preconditioner,
which is not performed in parallel in the present implementation (see section 5.2.3),
with a very poor parallel scaling of PC-loc-PCG as a result. Eventually, the savings
of the preconditioner are lost, and the overall CPU time converges to that of the
nonpreconditioned version.

Finally, the strategy PC-glo-PCG, based on the full assembly of the global con-
densed system (40) and using the mean operator as a preconditioner, has a parallel
efficiency behavior similar to that of PC-loc-CG, but with a computational cost up
to 16 times less. PC-glo-PCG outperforms the reference strategy Dir-loc-CG by a
factor of about 48 for NMPI “ 16 and remains asymptotically 20 times faster despite
its efficiency drop. Again, the drop in efficiency for PC-glo-PCG is caused by the
collective communication needed to assemble the global condensed system from its
local contributions. For the present example, this communication step involves the
exchange of about 4.5 million double precision values between all the NMPI processes.
In addition to being much more efficient than the other strategies, this last approach
lends itself to a task-based parallel framework, where data locality would be preserved
and collective communication would be avoided. Although outside the scope of this
paper, it is important to point out that adopting such a parallel processing paradigm
could potentially improve significantly the parallel scaling of this approach. In any
case, having a different treatment of the PC evaluation (parallelized across subdo-
mains) and of the condensed system solve (parallelized across samples) clearly allows
for more flexibility.
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To conclude this analysis, let us mention that the reported trends in the parallel
efficiency for the different methods does not significantly depend on the FE discretiza-
tion of the problem. This can be seen comparing the similar evolution of the CPU
times in Figure 12(a) and 12(b), the latter corresponding to an FE mesh with twice
as many elements as before, Ne “ 327,334 elements (leading to computational times
roughly twice as long). We also note that for this refined mesh and 16 processes,
PC-glo-PCG is roughly 64 times faster than for the reference Dir-loc-CG.

6. Conclusions. We have presented an acceleration strategy for an MC sampling-
based elliptic SPDE solver. The method employs a domain decomposition technique
to partition the computational domain into smaller nonoverlapping subdomains. In
a first stage, an approximation of the local boundary-to-residual map is constructed
independently over each subdomain. This approximation uses a PC expansion to rep-
resent the dependencies of the map on the stochastic coefficient of the elliptic equation.
The cost of computing this local PC approximation is reduced owing to the possibly
low-dimensional representation of the stochastic coefficient over the considered sub-
domain compared to its global representation. These local PC expansions can be
combined together to obtain an approximation of the (global) condensed problem re-
lating the stochastic solution at the interface of the subdomains. The local PC-based
representations of the condensed problem can be sampled with a low computational
cost, amounting to simple polynomial evaluations. This feature is exploited in a sec-
ond stage to generate, at a reduced computational cost, realizations of the stochastic
solution via MC sampling.

We validated the accuracy of the proposed approach on a numerical example that
also served to analyze convergence with the polynomial degree of the PC expansion.
An important finding is that, as desired, the domain decomposition allows for signifi-
cant computational time saving while having a negligible effect on the approximation
error which is essentially driven by the polynomial degree of the expansion. Selecting
appropriately the PC order is a general concern of stochastic spectral methods, and
this aspect deserves more investigation in the present approach, where the accuracy
of the condensed problem approximation does not straightforwardly translate into
accuracy of the sampled solutions. This was highlighted in our numerical tests which
reported loss of sampled operator positivity for low even degree expansion, although
the approximation error was small. Furthermore, the absolute accuracy of the PC
approximation has to be also balanced with the subsequent sampling error inherent
in finite size MC sampling. One possible venue to check the suitability of the PC
order could then be based on positivity verification (a minimal requirement), while
comparing the sample estimates at different PC orders could help verifying that the
MC sampling error dominates.

We also analyzed the performance of different parallel implementations of the
approach. Specifically, we showed that the cost of the preprocessing stage can be con-
veniently distributed over multiple processors with a close-to-ideal parallel efficiency
(higher than 80% in our experiments). Given that we used a naive, static, a priori load
balancing strategy, the scaling properties of the first stage could even be improved by
employing more advanced partitioning and load balancing techniques. Concerning the
sampling stage, all the parallel strategies involving the PC approximation of the con-
densed problem perform better than the reference approach. A noticeable degradation
in the parallel efficiency is, however, reported when the number of MPI processes is
increased. Despite this efficiency drop, the best sampling strategy is found to remain
at least 20 times faster than the reference for the largest number of processes tested
(512), while it is up to 60 times faster when only 16 MPI processes are used. The
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collective communications involved in the assembly of the condensed problem, from
the local contributions, are responsible for the efficiency drop. A possible way to
mitigate this issue would be to rely on a task-based parallel framework where data
locality would be preserved and collective communication would be avoided.

In addition to improving parallel efficiency, future work should focus on improved
partitioning strategies and the determination of the optimal number D of subdomains
yielding the lowest computational cost. The latter aspect is delicate, as it involves
several trade-offs. On the one hand, increasing D yields smaller numbers of local
random variables with (exponential) reduction of the local PC bases. The parallel
efficiency of constructing the PC approximation of the condensed problem also calls
for increasing D up to the point where the reduction in the number of local random
variables reaches diminishing returns or the memory requirement becomes too impor-
tant. On the other hand, increasing D translates into a larger condensed problem and
more communications at the sampling stage (but smaller local problems when the lo-
cal boundary conditions are determined). Besides these generic trends, the sweet spot
for D clearly depends on the computational architecture and the resources available,
making quite difficult the a priori definition of the optimal value. Instead, one should
first perform numerical experiments for few values of D and few MC samples to assess
the trends in the computational cost before deciding the value of D to be used. In
fact, a clear conclusion from our numerical experiments is that it is crucial to fix D
such that the workload is well balanced among the processors. We also remark that if
the sampling stage is dominating the computational effort, the selection of D should
follow the same considerations as for the deterministic case; it is well known that
in the deterministic case, the scaling of (the optimal) D with the number of degrees
of freedom depends highly on the the availability of effective preconditioners [14].
Another potential route to further develop the proposed approach is exploring the
potential interest of considering a hierarchy of FE meshes. This hierarchy could be
used to accelerate the solution of the condensed problem (as in two-level domain de-
composition methods [13, 34, 27]) and also to optimize the computational complexity
of the MC method (as in multilevel MC methods [8, 2]).

Finally, extending the proposed method to other PDE types would be interest-
ing. Linear stochastic parabolic problems should be easily casted in the proposed
framework, with the PC expansion of local time-advancement operators. Extension
to nonlinear stochastic problems is, on the contrary, much less obvious because of the
dependence of the operators on the solution, compromising the superposition princi-
ple on which our approach is based. However, many nonlinear solvers are based on
iterative approaches where the solution is incrementally updated via the solution of
a linear problem. It may thus be possible to accelerate this linear step relying on a
type of DD-PC approach. Such developments remain to be investigated.
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[25] M. Loève, Fonctions aléatoires du second ordre, in Processus Stochastique et mouvement
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