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Abstract

Ensemble Kalman (EnKF) filtering is an established framework for large scale state estima-
tion problems. EnKFs can also be used for state-parameter estimation, using the so-called
“Joint-EnKF” approach. The idea is simply to augment the state vector with the parameters
to be estimated and assign invariant dynamics for the time evolution of the parameters. In
this contribution, we investigate the efficiency of the Joint-EnKF for estimating spatially-
varying Manning’s n coefficients used to define the bottom roughness in the Shallow Water
Equations (SWEs) of a coastal ocean model.

Observation System Simulation Experiments (OSSEs) are conducted using the ADvanced
CIRCulation (ADCIRC) model, which solves a modified form of the Shallow Water Equa-
tions. A deterministic EnKF, the Singular Evolutive Interpolated Kalman (SEIK) filter,
is used to estimate a vector of Manning’s n coefficients defined at the model nodal points
by assimilating synthetic water elevation data. It is found that with reasonable ensemble
size (O(10)), the filter’s estimate converges to the reference Manning’s field. To enhance
performance, we have further reduced the dimension of the parameter search space through
a Karhunen-Loéve (KL) expansion. We have also iterated on the filter update step to better
account for the nonlinearity of the parameter estimation problem. We study the sensitivity
of the system to the ensemble size, localization scale, dimension of retained KL modes, and
number of iterations. The performance of the proposed framework in term of estimation ac-
curacy suggests that a well-tuned Joint-EnKF provides a promising robust approach to infer
spatially varying seabed roughness parameters in the context of coastal ocean modeling.

Keywords: Data assimilation, Singular Evolutive Interpolated Kalman filter, Manning’s n
coefficients, ADvanced CIRCulation (ADCIRC) model, Uncertainty quantification
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1. Introduction1

Simulation of ocean waves, tides, and estuarine and coastal floodplain inundation is cru-2

cial for various maritime-related activities, coastal resources management, planning, and3

sustenance [1]. In particular, accurate storm-surge forecasting during extreme events may4

considerably improve the chance of protecting lives and coastal infrastructures, which ulti-5

mately benefit the global community, both economically and ecologically (e.g. [2, 3, 4, 5]).6

The shallow water equations (SWEs), derived from depth-integrating the Navier-Stokes7

equations, have been widely used in coastal ocean modeling. They assume that the horizon-8

tal length scale of the problem domain is much larger than the vertical length scale under9

hydrostatic pressure [6, 7]. In real world applications, the numerical solution of the SWEs is10

subject to various sources of uncertainty, such as modeling errors, numerical discretization,11

inputs uncertainty, etc. In particular, the uncertainty associated with the poor characteri-12

zation of the model parameters is considered a major source of error [8, 1, 9]. A number of13

recent studies have therefore focused on quantifying and reducing the uncertainties associ-14

ated with input parameters, aiming to achieve more reliable forecasts in fluid flow modeling15

(e.g. [10, 11, 12, 13]). In coastal ocean modeling, the specification of a parameter called16

“the Manning’s n coefficient of roughnes”, used to define the bottom stress components in17

the SWEs, is particularly important [14, 15, 16].18

The Manning’s n coefficient is an empirically derived parameter, defined as the resistance19

to water flow due to bottom surface characteristics (e.g., sands, rocks and reefs etc.). It20

is used to describe multiple types of resistance, e.g. friction resistance, form resistance,21

wave resistance, and resistance of flow instability [17, 18]. It enters the SWEs via the22

momentum equations, and the amplitude of the water column at a given point in the model23

domain can be highly sensitive to its value [15]. The Manning’s n coefficient cannot be24

measured directly [19] and often exhibits spatially heterogeneous variability. It also depends25

on the ocean bottom surface characteristics; changes in the ocean floor during extreme26

events (such as storm surges and tsunamis) may further alter the near-shore Manning’s n27

field. In such hazardous scenarios, it is critical that changes in ocean bottom stress be28

detected and updated to accurately predict water height. Unfortunately, the acquisition29

of the complete knowledge of Manning’s n coefficients in realistic settings is not feasible.30

Parameter identification by trial-and-error, e.g. comparing the SWEs solution produced by31

different Manning’s fields to observations, is tedious and impractical [20]. As a consequence,32

parameter specification methods, based on established look-up tables for each land cover33

type and roughness, have been commonly used to parameterize Manning’s n fields in large34

scale coastal ocean models [6, 21, 3]. A more advanced specification method based on a35
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random forest model was also proposed in [22]. In this paper, we resort to a well-established36

inverse modeling approach [15] to infer spatially-varying Manning’s n coefficients.37

A number of approaches have been developed to solve parameter estimation problems in38

the context of meteorology and oceanography (e.g. [23, 24, 25, 26]). Many are originally mo-39

tivated by optimal control theory [27], and are based on the minimization of a cost function40

penalizing discrepancies between model outputs and observations [28, 29, 30, 31]. However,41

this approach can be computationally demanding and typically requires the development of42

an adjoint model [32, 33, 34]. Another popular approach for parameter inference is through43

the Bayesian framework [35, 36], where the parameters are represented with probability44

density functions (pdfs) conditioned on available data. The parameter inference problem45

is then viewed as the transformation of a prior pdf to a posterior pdf by incorporating the46

likelihood of the observations [37]. The posterior is rarely explicit and often needs to be47

sampled as a collection of realizations that are consistent with data and prior information48

[38]. The most popular implementation of this method is the Markov Chain Monte Carlo49

(MCMC) method (e.g., [39, 40]), which has become more practical in recent years with in-50

creases in computational power. The primary advantage of MCMC is the ability to produce51

a full approximation of the posterior distribution. As a result, MCMC is often treated as the52

benchmark to evaluate the performance of other parameter inference methods [41, 24, 16].53

In order to obtain good resolution of the posterior distribution, a large number of samples54

are required [12, 13]. This makes MCMC very computationally demanding, as each MCMC55

iteration requires a model evaluation in order to compute the likelihood. As a result, using56

MCMC for parameter estimation is often too costly for a realistic large scale inference57

problem. Even with model reduction techniques, e.g., Polynomial chaos, KL expansions,58

etc., parameter estimation in MCMC may still be quite computationally prohibitive.59

Bayesian inference can also be cast as a filtering problem in which the posterior distri-60

bution is updated sequentially as data becomes available [42], an approach known as data61

assimilation. A Bayesian filter operates as a succession of forecast steps to propagate the62

pdf of the unknowns forward in time, and update steps to incorporate data every time new63

observations become available. For parameter estimation, filtering schemes usually apply64

the standard augmented state-parameter technique [43, 44, 45], that allow the state and pa-65

rameters of the system to be estimated concurrently. Currently, the most popular approach66

for data assimilation into ocean models is the Ensemble Kalman Filter (EnKF) [46, 42] and67

its deterministic versions ([47, 44, 48, 49, 50], to cite but a few). An EnKF follows a Monte68

Carlo framework to integrate an ensemble of model realizations in the forecast step and then69

applies a linear Kalman correction in the update step [51]. The stochastic EnKF assimilates70

perturbed observations and this was shown to induce noise in the final solution when the71

filter is implemented with small ensembles [26, 50]. Deterministic EnKFs, which avoid obser-72

vations perturbations, mainly differ in the way they sample the new analysis ensemble after73

the filter update step. Various deterministic EnKFs were compared with a realistic setting74

of ADvanced CIRCulation (ADCIRC) model in the Gulf of Mexico [26], showing that, with75

enough tuning, these filters performed closely well, all outperforming the stochastic EnKF.76

The primary advantage of EnKF-type techniques over MCMC is the algorithmic ability77

to directly accommodate the estimation of large dimensional state-parameter vectors [52,78
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53, 54, 55, 56, 57]. Furthermore, these methods are non-intrusive, i.e. they require no79

modifications to the model code. Despite their empirical Gaussian framework [58, 59],80

EnKF methods have been found to be efficient in terms of performance, computational81

cost, and robustness in handling ocean state estimation problems (e.g., [60, 61, 62, 63, 64]).82

There is now increasing interest in the coastal ocean community to apply EnKF methods83

to parameter estimation problems. [15] and [16] have demonstrated that the EnKFs are84

able to provide very good estimates of low-dimensional parameterizations of Manning’s n85

coefficients in the SWEs.86

In this study, we are interested in the inference problem of a 2D spatially varying Man-87

ning’s n coefficient. The approach we follow resembles that of [57], which consists of a88

sequence of methods to formulate the inference of parameters, including a statistical param-89

eterization of the parameter search space, the construction of a synthetic parameter field, the90

generation of an initial (prior) ensemble, the implementation of a model reduction technique,91

and finally the application of a parameter inference method. We generate realizations of 2D92

spatial maps of Manning’s n coefficients subjected to a few synthetic observations based93

on the sequential simulation algorithm of multi-Gaussian fields [65]. A reference field and94

an initial ensemble are then selected from these realizations. Next, we apply the Singular95

Evolutive Interpolated Kalman (SEIK) filter, a deterministic EnKF [66, 48, 67], to estimate96

the reference Manning’s n field using the Joint-EnKF. Localization [68, 69] is also applied to97

enable efficient implementation of the SEIK with reasonable ensemble sizes and to remove98

any spurious correlations between distant points. To limit the parameter search space, and99

impose some regularization on the inferred model, a truncated Karhunen-Loéve (KL) se-100

ries is constructed by applying a singular value decomposition on the covariance matrix of101

various realizations of Manning’s n coefficients. The parameters are then updated through102

their coordinates in the reduced KL basis, instead of the large nodally defined parameter103

vector. The representation of the ensemble members in the KL basis is expected to better104

preserve the geostatistical characteristics of the parameter field in the filter update steps105

[70, 71]. Finally, to enhance the filter’s performance and better deal with the nonlinear106

parameter estimation problem, we introduce iterations to the SEIK update steps as in [72]107

and [73]. Numerical experiments are conducted to evaluate the performance of the iterative108

SEIK against the EnKF in a realistic coastal configuration using the ADCIRC model.109

The rest of this paper is organized as follows. The problem formulation is described in110

section 2. Section 3 summarizes the techniques used in our inference framework, including111

the sampling of multi-Gaussian realizations of the parameter field, the KL expansion, and112

the SEIK filter. Section 4 describes the details of the experimental setup. The experimen-113

tal results, its significance, and implications are presented and discussed in section 5. A114

summary of the work and conclusions are given in section 6.115

2. Problem formulation116

2.1. ADvanced CIRCulation (ADCIRC) model117

We use the ADvanced CIRCulation (ADCIRC) model, which solves the SWEs derived118

from the depth integration of the incompressible Navier-Stokes equations:119
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∂H

∂t
+

∂

∂x
(Qx) +

∂

∂y
(Qy) = 0, (1)

∂Qx

∂t
+
∂UQx

∂x
+
∂V Qx

∂y
− fQy = −gH ∂[ζ + Ps/gρ0 − αη]

∂x

+
τsx
ρ0

− τbx
ρ0

+Mx −Dx − Bx,

∂Qy

∂t
+
∂UQy

∂x
+
∂V Qy

∂y
− fQx = −gH ∂[ζ + Ps/gρ0 − αη]

∂y

+
τsy
ρ0

− τby
ρ0

+My −Dy − By.

(2)

Here, ζ is the free-surface elevation relative to the geoid, h is the bathymetric depth relative120

to geoid, H = ζ + h is the water depth, U and V are the depth-averaged horizontal velocity121

components, Qx = UH and Qy = V H are the flux per unit width in the x and y directions,122

f is the Coriolis parameter, g is acceleration due to gravity, Ps is the atmospheric pressure123

at the free surface, ρ0 is the reference density of water, α is the Earth elasticity factor, η in124

the Newtonian equilibrium tide potential, τsx and τsy are the applied free surface stresses,125

τbx and τby are the bottom friction components, Mx and My are the vertically-integrated126

lateral stress gradients, Dx and Dy are the momentum dispersion, and Bx and By are the127

vertically-integrated baroclinic pressure gradients. In ADCIRC, the continuity equation is128

replaced by the second-order, hyperbolic generalized wave continuity equation (GWCE) to129

reduce spurious oscillations that occur in the original form. Manning’s n coefficients arise in130

the bottom friction terms of (2). The explicit expression of the bottom friction components131

are
τbx
ρ0

=
KslipQx

H
and

τby
ρ0

=
KslipQy

H
. The coefficient Kslip = cf |u|, where cf =

gn2

H1/3
,132

represents a quadratic drag law. The scalar value, n, is the Manning’s n coefficient. Since133

the Manning’s n coefficients spatially vary, they are defined node-wise within the discretized134

physical domain, and are a piece-wise linear representation of the continuous bottom friction135

field.136

The SWEs in ADCIRC are discretized spatially using a first-order continuous Galerkin137

finite element method with unstructured triangular elements. The time derivatives in the138

GWCE are approximated with centered finite differences, and forward differences are used139

for the time derivatives in the momentum equations. ADCIRC has been successfully imple-140

mented in many coastal ocean studies (e.g. [74, 3, 4, 5, 75, 67]).141

To simulate tides in an estuarian system, we adopted the same domain as that of [15]142

and [16]. This selected domain is an idealized coastal inlet with an ebb shoal, with an143

open ocean boundary on the left and a reflective boundary (representing the wall along144

the coastline) on the right as shown in Figure 1. The domain is discretized into 1,518 grid145

nodes and 2,828 elements. Its dimension is 4500 m in the x-direction and 3000 m in the146

y-direction. Bathymetry is measured downward from the geoid to the ocean floor. The147
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bathymetric depth increases linearly from 3.8 m at the open ocean boundary to 1 m at the148

mouth of the inlet on the west side of the domain. The shallowest area of the domain is on149

the mound in front of the west entrance of the inlet with a depth of 0.5 m below the geoid.150

The landlocked area has a constant bathymetry of 1 m. The diameter of the ebb shoal is151

750 m. This configuration is considered to be a simplified version of a real-world ebb shoal152

system, which is a natural feature of many coastal ocean regions. We force ADCIRC by the153

M2 tidal constituent with an amplitude of 0.25 m (relative to the geoid) and a 2 s time step.154

Figure 1: Idealized inlet with ebb shoal domain. The discretization of the domain is represented. The first
15 observation stations used in the experiment are marked with red dots, and the additional 9 observa-
tion stations added later are marked with white. The color bar represents the bathymetry of the domain
measuring down from the geoid (m).

3. Parameter Estimation Framework155

This section describes the techniques that are used in our parameters inference frame-156

work. These include: (3.1) a sampling scheme and a search space representation (sequential157

simulation algorithm), (3.2) reduction of the search space (Karhunen-Loève (KL) expan-158

sion), (3.3) an ensemble filtering inference scheme (Joint-SEIK for parameter inference),159

and (3.4) an iterative technique in the filter update step (iterative SEIK).160
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3.1. Sequential simulation algorithm161

The generation of spatially-dependent fields of various variables is useful for the numer-162

ical simulation of many problems in geophysical fluid dynamics [65]. Since the collected163

data is often limited, one must resort to algorithms capable of generating realizations of a164

full variable field, subject to available data and a suitable covariance model. One of the165

well-established techniques to generate spatially variant maps is the so-called ‘sequential166

simulation algorithm’ [76]. This method recursively draws realizations of variables from a167

multivariate pdf modeled from series of univariate conditional pdfs that are constrained by168

available data. For variables following joint Gaussian distributions, the prescribed covariance169

model, mean, and variance of the field are needed in order to solve for a set of coefficients in170

a simple kriging system [77]. These are then used to calculate the mean and variance that171

characterize the conditional density function of each variable, given the set of conditioning172

data. The covariance model is given by Cov(h) = c − g(h) where h is the variable, g(h) is173

the corresponding semi-variogram model and c is its sill. In this study, the Manning’s field174

is assumed Gaussian and anisotropic, which can be sampled from Gaussian semi-variogram175

of the form176

g(h) = c ·
(

1− exp
(

−h2
))

. (3)

Here h =
√

(hx/ax)2 + (hy/ay)2, where hi, i = x, y, is the lag distance between two locations177

in the i direction and ai, i = x, y, is an appropriate range in the i direction.178

3.2. Karhunen-Loève (KL) expansion179

The KL expansion [78, 79], is a classical method for expressing stochastic processes as180

an orthonormal set of deterministic functions. It follows the result of Mercer’s theorem181

[80], which states that a symmetric positive definite matrix C (x1,x2) admits the spectral182

decomposition183

C (x1,x2) =
∞
∑

k=1

λkψk(x1)ψk(x2), (4)

where λk > 0 are the eigenvalues of C and ψk are the corresponding eigenvectors, i.e. the184

terms in (4) must satisfy185

∫

Ω

C (x1,x2)ψk(x2)dx2 = λkψk(x1), k = 1, 2, ... (5)

The sequential simulation algorithm described in subsection 3.1. produces realizations186

of a variable field with mean µ(x) and a discretization C (x1,x2) of the covariance function187

Cov(h), where x ∈ R
d is a vector of length d of the nodes of a discretized domain. The188

covariance function is then decomposed according to Mercer’s theorem. Let K (x, ξ) be a189

stochastic function of a coordinate vector x and a random variable ξ. Every realization of190

K can then be expressed as191

K (x, ξ) = µ(x) +
∞
∑

k=1

√

λkξkψk(x). (6)
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In the case of a multi-Gaussian field generated by the sequential simulation algorithm, ξk192

is a Gaussian independent identically distributed random variable with zero mean and unit193

variance. The function K is fully characterized by a set of ξk when the basis ψk is known.194

Given a realization of K , together with a known covariance matrix, the ξk can be obtained195

by evaluating the integral196

ξk =

∫

(K (x, ξ)− µ(x))ψk(x)dx. (7)

KL expansions represent highly spatially variant parameters as realizations of a stochas-197

tic process with only a few dominant modes by truncating the infinite series in (6) with a198

finite number of N terms. The size N essentially depends on the desired energy percentage199

to be retained by the KL modes
∑N

k=1

√
λk/

∑

∞

k=1

√
λk. This notion of “optimal” trunca-200

tion is particularly useful for large scale parameter inference problems in order to alleviate201

computational burdens while retaining the essential features of the inference space [57].202

3.3. Joint-SEIK for parameter Inference203

The Joint EnKF approach is widely used for parameter estimation by the subsurface204

modeling community (e.g. [53, 55, 25, 81, 45]). In the most general form, a vector of model205

parameters to be estimated, w, is appended to the system state vector xk, to form the joint206

state-parameter vector207

zk =

[

xk

w

]

. (8)

Assuming stationary dynamics for the parameters, the augmented state-space model is then208

written as209

zk =

[

xk

wk

]

=

[

M (xk−1)
wk−1

]

+

[

ηk
0

]

, (9)

where M is the dynamical operator describing the time evolution of the state vector from210

time k − 1 to time k, and ηk is the model error with Gaussian of mean zero and covariance211

matrix Qk. The observation yk is then related to the augmented state vector as212

yk = Hz

k(zk) + εzk = Hk(xk) + εk, (10)

where Hk is the linearized observation operator and εk the measurement noise.213

Some studies pointed to some difficulties in estimating the model parameters with the214

ensemble Kalman filter [82, 83, 84], but many more presented quite successful implemen-215

tations, e.g. [85, 86, 25, 87, 16] just to cite a few. Among the most reported issues were216

related to strong nonlinear relations between the observations and the estimated parameters217

[88, 89, 90], the relevance of the assimilated information [44], and the size of the problem [91].218

These were however not problematic in our particular setting and the filter performances219

were deemed quite satisfactory in our numerical experiments presented in section 5.220

8



  

Here we follow [15] and [61], and implement the Singular Evolutive Interpolated Kalman221

(SEIK) filter, which was found to be particularly efficient at enhancing the predictive capa-222

bilities of ADCIRC [61, 26] and also for parameters estimation [15, 16]. Compared to the223

other deterministic EnKFs, SEIK involves a stochastic rotation in the resampling step to224

randomly spread the error variance in the ensemble space [48], which is suitable for strongly225

nonlinear dynamics that often arise during storm surges and was later suggested for the226

Ensemble Transform Kalman Filter (ETKF) [92, 93]. SEIK algorithm can be split in three227

steps; given an initial ensemble (za,i0 , i = 1, ..., N).228

3.3.1. Forecast step229

The forecast step integrates the analyzed ensemble members, z
a,i
k−1

, with the model (9)230

to compute the forecast ensemble members, z
f,i
k . One then takes the average of the z

f,i
k as231

the forecast state vector, z
f
k , and their sample covariance as the forecast error covariance,232

P
f
k . Assuming a perfect model (Qk = 0), one can decompose233

P
f
k = LkUk−1L

T
k , (11)

with234

Lk =
[

z
f,1
k − z

f
k ... z

f,r+1

k − z
f
k

]

T, (12)

and235

Uk−1 = [(r − 1)TTT]−1. (13)

Here T is an (r + 1) × r full rank orthogonal matrix with zero column sums. When the236

model error is not neglected, SEIK accommodates the model error by adding its covariance237

matrix to the right hand side of (11). Its algorithm remains mostly unchanged. However238

in this case, P
f
k will not remain of low-rank r, and re-approximating the forecast covariance239

matrix P
f
k will be required ([94]).240

3.3.2. Analysis step241

When a new observation yk becomes available, The forecast state is updated to obtain242

the analysis state243

zak = z
f
k + Kk(y

o
k − Hkz

f
k), (14)

where Kk is the Kalman gain244

Kk = LkUk(HL)Tk R−1

k . (15)

(HL)k is computed by applying Hk to the ensemble perturbations z
f,i
k − z

f
k ,245

(HL)k =
[

Hk(z
f,1
k − z

f
k) ... Hk(z

f,r+1

k − z
f
k)
]

T, (16)
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and246

U−1

k =
1

ρ
U−1

k−1 + (HL)Tk R−1

k (HL)k. (17)

The inflation factor, ρ, is used to inflate the forecast error covariance as a way to account for247

various sources of uncertainties in the system, e.g. model error, small ensembles, Gaussian248

assumption, etc [44, 48]. The analysis error covariance can be expressed as Pa
k = LkUkL

T
k ,249

but this is not needed for the filter algorithm.250

3.3.3. Resampling step251

New ensemble members need to be generated to start the next forecast cycle. These are252

sampled from the analysis mean and the covariance as253

z
a,i
k−1

= zak−1 +
√
NLk−1(Ωk−1C

−1

k−1)
T , i = 1, ..., N (18)

where Ωk−1 is an (r + 1) × r matrix with orthonormal columns and zero column sums254

generated using Householder matrices [66, 48]. In this study, we are only interested in255

estimating the parameters, i.e. wk.256

3.4. Iterative SEIK257

Parameter estimation with an EnKF can suffer from strong nonlinearities between the258

observed state and the parameters [95]. Iterating on the parameter update step has been259

shown to improve the accuracy of the filter estimates [96, 73].260

Let x
a,j
k be the analyzed state at timestep k and iteration j. The iterative SEIK (ISEIK)261

seeks the solution of the nonlinear least squares problem:262

argmin
x
a,j+1

k

‖yo
k −H(xa,j

k )− J
j
k(x

a,j+1

k − x
a,j
k )‖2

Rk
+ ‖xa,j+1

k − x
a,j
k ‖2

Ck
, (19)

where J is the Jacobian matrix of H. The term H(x) − Ji
k(x

a,j+1

k − x
a,j
k ) is the first-order263

Taylor approximation of H(xa,j+1

k ) and Ck is a symmetric, positive semidefinite matrix. The264

solution x
a,j+1

k of (19) is derived in [97] as265

x
a,j+1

k = x
a,j
k + Kk(y

o
k −H(xa,j

k )). (20)

We see that this equation is the iterative form of (14).266

As the iterations advance, the inbreeding problem may cause the filter to increasingly267

underestimate the ensemble variance, ultimately degrading the filter’s performance [98].268

This problem is more pronounced when the parameter and the state are strongly nonlinearly269

related. To this end, we adopt a strategy that limits the size of the update term in the later270

iterations via a damping factor ωj, as suggested by [54]. The factor ωj takes values between271

0 to 1 and multiplies the update term (increment to the forecast) in (20). This helps to272

smooth the perturbation of Manning’s n coefficients, which alleviates the impact of the273

state-parameter nonlinear relation and sampling errors.274
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The iterative scheme (20) can be directly applied to SEIK with minor modifications. In275

particular, if H is linear (as in this study) and Ck is taken as the covariance matrix Pk,276

then one only needs to iterate on (HL)k to derive the iterative SEIK scheme. Moreover,277

since here we only update the parameters and not the state, we only need to iterate on278

the parameter ensemble mean in (20), while maintaining the ensemble variance during each279

assimilation cycle k. In this study, the iterations are stopped when the updates become280

small or a maximum iteration number is reached. For more sophisticated stopping criteria,281

readers may refer to [99].282

4. Experimental setup283

4.1. Generating synthetic multi-Gaussian Manning’s n fields284

Synthetic data of the Manning’s n coefficients are first generated by taking a small285

number of samples from the uniform distribution U(0.005, 0.2) to simulate a scenario where a286

few point-wise Manning’s n coefficients data are collected (or inferred from point-wise bottom287

surface characteristics). These data are assumed collected at 24 locations representing the288

observations stations as illustrated in Figure 1. The synthetic Manning’s n coefficient data289

are then integrated with the public domain ANSI-C code ‘GCOSIM3D’ developed in [65],290

to generate multi-Gaussian 2D Manning’s fields for our idealized ebb shoal domain, based291

on the sequential simulation algorithm (section 3.1). From this, any number of Manning’s292

field realizations can be generated once the properties of the semi-variogram are set. We293

first generate 1000 realizations of nodally-defined parameter fields following the Gaussian294

semi-variogram as in (3), with a mean of 0.1025, a variance of 0.0002, and a correlation295

range of 180 m in the x-direction and 30 m in the y-direction. The variance is properly296

scaled so that the realizations of 2D multi-Gaussian fields fall within an appropriate range297

of Manning’s n coefficients (0.005 - 0.2). The maximum and minimum Manning’s n values of298

these realizations are 0.1879 and 0.0177, respectively. Examples of realizations of Manning’s299

n fields generated by the sequential simulation algorithm are shown in Figure 2. These300

realizations are used to select the initial ensemble, compute the KL modes, and define the301

reference field.302

4.2. Observation System Simulation Experiments (OSSEs)303

We let the 101st realization generated by GCOSIM3D code in section 4.1 be the refer-304

ence Manning’s n field, which we seek to infer (Figure 2). Synthetic observations of water305

elevation are generated by ADCIRC integrated using the reference Manning’s n field. The306

dimension of the observations is the number of observed locations multiplied by the number307

of assimilation time steps. Initially, we use 15 observation stations as shown in Figure 1,308

and 108 assimilation timesteps (4.5 days with incoming data every 1 hour). Later, we also309

increase the number of observation stations to 24 and total assimilation time to 20 days in310

some experiments to study the impact of the number of observations on parameter inference.311

Two-hundred Manning’s n field realizations, excluding the reference realization, are taken312

as the initial members. We first let the simulation ramp-up for 12 days using the mean313

of the initial members before the first assimilation cycle starts. The observations are then314
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assimilated by SEIK to infer the reference Manning’s field. We test the filter with four dif-315

ferent settings: 1) nodally-defined Manning’s n values, 2) Manning’s n field parameterized316

by the KL-reduced space, 3) Manning’s n field inference in the KL space with perturbed317

variogram models, and 4) iterative SEIK filter inferring the Manning’s field in both the full318

and reduced space.319

4.3. KL basis construction320

The sample covariance of the 1000 realizations generated in subsection 4.1 is decomposed321

as in (4) to obtain the set of eigenpairs and the KL expansion of the parameter (i.e., the322

2D Manning’s n coefficients) as in (6). The cumulative sum of eigenvalues, which indicates323

the total variance retained by the KL expansion is plotted at the bottommost of Figure 3.324

It shows that retaining 10 and 20 KL terms respectively preserve more than 83% and 98%325

of the total variance of the realizations. By increasing the truncation to 30 KL terms, more326

than 99% of the total variance is retained.327

Figure 3 also shows an example of the reconstruction of a Manning’s field using a trun-328

cated KL expansion. The top row of the figure shows the mean of the 1000-realizations329

of the Manning’s n field and the 101st realization, respectively. The remaining subfigures330

are the reconstructions of the 101st realization as we increase the number of KL terms in331

(6). One can observe that with a small number of KL terms, for example, 3 KL modes,332

the reconstructed field resembles the mean, as the mean field dominates the modes. As we333

increase the number of KL terms, the reconstruction starts converging toward the target334

realization (the 101st realization in this figure).335

5. Results and discussion336

5.1. SEIK inference of nodally defined Manning’s n values337

Figure 4(a)-(d) present the results of the Manning’s n field SEIK inference using only338

10 ensemble members compared to the reference field. The impact of the SEIK updates is339

clear from the final analysis, as the filter solution more accurately represents the reference340

Manning’s n field. The 2D plot of the ratio between the final error and the initial error341

suggests reasonably small errors in most locations, except those where the Manning’s n342

values of the initial ensemble vastly differ from the true values. With only 10 ensemble343

members, this set of results is considered as a preliminary test, upon which we make efforts344

to improve.345

We then applied Local Analysis (LA) in an attempt to improve the SEIK filter perfor-346

mance [100], later referred to as ‘local SEIK’. This technique provides a straightforward way347

to cut the spurious long-range correlations in the covariance matrix of the filter’s analysis348

step. In Figure 5, we show the time-series of Root Mean Square Errors (RMSEs) of the349

analysis with respect to the reference field for various localization distances (in meters). Lo-350

calization enhances the filter’s performance in most cases, although the filter’s behavior with351

10 members is quite sensitive to the choice of the localization distances (ld); the smallest352

RMSE at the end of the assimilation window is attained using ld = 1500 m.353
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In Figure 4(e) and (f), we show the impacts of applying localization to the SEIK filter.354

There is a clear improvement compared to those obtained without localization. The recovery355

of the Manning’s n coefficients around the right side of the inlet and the top left corner of356

the domain is notably improved. The ratio between the final error and the initial error are357

close to zero in most areas, except the areas where the difference between the Manning’s n358

values of the initial ensemble and the reference values were sizable.359

5.1.1. Sensitivity to ensemble size360

Increasing the ensemble size is generally expected to enhance the performance of an361

EnKF [48, 101, 34]. In [16], increasing the ensemble size from 10 to 100 drastically improved362

the estimation of a 1D Manning’s n coefficient in ADCIRC. However, this raises the issue of363

determining a good trade-off between filter performance and computational costs. Doubling364

the size of the ensemble means twice as many model runs are required. In the case of a365

complex model such as ADCIRC, this can result in a tremendous increase in computational366

time. Our first aim is to determine the ensemble size that yields satisfying filter performance367

with reasonable computational cost.368

We thus assess the filter’s performance with increasing numbers of ensemble members:369

10, 50, 100, and 200, respectively, using the same localization distance (ld = 1500 m). The370

best localization distance in term of reducing the RMSE can be dependent on the ensemble371

size, however, we found that the localization length scale of 1500 m provides the lowest372

RMSE for most of our experiments (the top panel of Figure 6). More in-depth discussions373

on the choice of the localization length scale can be found in [100]. The time-series RMSE374

results of these runs, including the runs from subsection 5.1., are shown in the bottom panel375

of Figure 6. Here we see that increasing the number of ensemble members to 100 greatly376

reduces the discrepancy between the estimates and the reference field. However, increasing377

the ensemble size beyond 100 members does not significantly boost the performance of the378

filter, although it drastically increases the computational cost.379

Figure 7(c) and (d) summarize the results obtained by implementing local SEIK with380

100 ensemble members. Improvements over the case with 10 ensemble members are clear.381

The analysis at the end of the assimilation window accurately recovers the 2D Manning’s n382

coefficients at the right side of the inlet. The pattern of small Manning’s n values around383

the upper-right corner of the domain is also well recovered compared to the case with only384

10 members. With this improvement, the ratios of the final to the initial error are close385

to zero and less than one in most areas, indicating that the local SEIK solution converges386

toward the reference field at almost every point in the domain.387

5.1.2. Sensitivity to the number of observations and assimilation cycle388

In general, it is preferable to assimilate as many observations as possible to compute389

reliable estimates. Here we explore the behavior of the system with an increasing number390

of observations, both spatially and temporally. We first introduce 9 additional observation391

stations (indicated with white dots in Figure 1) to the domain, increasing the total number392

of observation stations from 15 to 24. The observations locations are sampled to evenly span393
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the spatial domain. We also increase the simulation time to 20 days, which equates to 468394

total assimilation cycles.395

Figure 7(e) and (f) outline the results of this experiment, where 100 ensemble members396

are used. The SEIK filter successfully recovers most of the features of the Manning’s n397

coefficients shown in the reference field. The node-wise ratios between the final error and398

the initial error are small and close to zero in most areas. The pattern of low Manning’s399

n coefficients in the right land-locked area to the left area near the open ocean area is400

almost fully recovered. The only area where there is difficulty recovering the Manning’s n401

features is the bottom-right corner of the domain. This can be attributed to the absence of402

observations in this area. In addition, we analyze the misfit between the filter estimate and403

the truth in Figure 7(g) in relation to the predicted variance of the error as estimated by the404

ensemble standard deviation (STD) in Figure 7(h), as resulting from the filter. Overall, both405

statistics are of the same order despite relatively larger STDs along eastern and northern406

boundaries. The plots further reveal similar spatial structures, e.g., large error and STD407

values at the bottom-right corner of the domain (highlighted in red) where the observations408

are scarce, contrasting with small errors and STD around the center of the open ocean area409

(highlighted in dark blue), where the observations are more abundant. Similar consistencies410

between the final (misfit between the truth and final estimate) and predicted (filter error411

variance) estimation errors were obtained in the rest of our experiments, indicating that412

with large enough ensembles and good tuning of the localization radius, the estimation of413

Manning’s n coefficients with the EnKF does not suffer from any divergence problem in our414

particular setting.415

In Figure 8 we see the time-evolution of the RMSE of the estimates with respect to416

the reference field, based on three different implementations of SEIK with 100 ensemble417

members: regular SEIK, local SEIK, and local SEIK with additional observations and as-418

similation cycles, respectively. The discrepancy between the estimate and the truth visibly419

decreases as more observations are assimilated into the system, with a decreasing RMSE420

trend that suggests further improvements might be obtained with more assimilation cycles.421

Another conclusion one can draw from the time-evolution of the RMSE is that the filter422

does not really benefit in terms of estimation accuracy from localization when implemented423

with 100 ensemble members. Hereafter, we will consider the regular SEIK solution with 100424

members as a reference to evaluate the performance of various tested filtering schemes.425

5.2. SEIK inference in KL space426

Instead of using SEIK to update the nodally-defined parameter, here we update the KL427

coefficients, ξ, that represent a specific realization of the Manning’s n field in the KL space,428

using the same filtering procedure for parameter estimation described in subsection 3.3. The429

number of KL coefficients to be updated by the filter is the number of terms retained in430

the KL expansion. Here, we study the sensitivity of the performance of SEIK for parameter431

estimation in the KL space, later referred to as SEIK-KL, to both the number of retained432

terms and the ensemble size.433

In Figure 9, we plot the time-evolution of the RMSE of the analyzed Manning’s n field434

with varying ensemble size and the number of KL terms. Each individual curve represents435
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the RMSE of a single SEIK run with a fixed ensemble size and a specific number of preserved436

KL terms. The left column of subfigures (Figure 9(a), (b) and (c)) show the RMSE of SEIK-437

KL using different numbers of KL terms for a specified ensemble size. Conversely, the right438

column of subfigures (Figure 9(d), (e) and (f)) show the RMSE for a specified number of439

KL terms and varying ensemble sizes. First, we examine the results of SEIK inference with440

10 ensemble members (Figure 9(a)). In all cases, SEIK-KL efficiently reduces the RMSE441

over time and leads to better final estimates than the regular SEIK. This suggests that the442

ensembles in the KL space exploit the statistical information retained by the KL modes to443

better span the parameter search space as compared to the full space spanned by limited444

ensembles.445

The convergence rate of SEIK-KL estimates to the truth is sensitive to the number of446

retained KL terms. For instance, when using 10 KL terms, the analysis converges rapidly447

toward the solution but quickly levels off after a few assimilation cycles. Increasing the448

simulation time does not improve the estimates when the ensemble size and number of449

retained KL terms are small. This is because a few KL terms are not enough to completely450

describe the variability of the search space. The filter stops improving after a few assimilation451

cycles due to the limited search directions, as also observed in [70]. Increasing the ensemble452

size in this case does not help much as a relatively small ensemble (often suggested to be453

of rank equal to the search space [66]) should be enough for efficient filtering. When the454

number of KL terms is increased (e.g., to 20 and 30 terms), the stagnant RMSEs pattern in455

the previous case is less pronounced, and the analysis starts to converge gradually, but slowly,456

toward the reference solution. Including more KL terms enables more search directions in457

the parameter space to be explored. As a result, more assimilation cycles may help SEIK-458

KL recover the reference field. Given a sufficiently large assimilation window, the SEIK-KL459

with 20 and 30 KL terms outperforms that of 10 KL terms.460

Increasing the ensemble size (Figure 9(b) and (c)), further reduces the RMSEs. However,461

the difference is not significant in the case of 10 KL terms. SEIK-KL inference with larger462

numbers of retained KL terms outperforms the cases with fewer KL terms for larger ensemble463

sizes. Figure 9(b) shows that using 50 ensemble members, SEIK-KL with 30 KL terms464

starts to outperform the 10 KL-terms case at the end of the assimilation window. When465

100 members are used (Figure 9(c)), SEIK-KL with 20 and 30 KL terms leads to notably466

better estimates than those obtained using 10 KL terms. Due to less inherent variability,467

SEIK-KL with 20 KL terms performs poorer than the SEIK-KL with 30 KL terms for all468

tested ensemble sizes (Figure 9(a),(b) and (c)). Also, SEIK with the full, nodally-defined469

parameter vector outperforms the SEIK-KL with 10-KL terms. Applying regular SEIK470

using 100 members leads approximately to the same level of RMSE as that of the best KL471

case (i.e., the 30-KL-terms case).472

The sensitivity of the performance of SEIK-KL inference to the ensemble size is presented473

in the three plots in the right column of Figure 9. In general, we see that as the ensemble474

size increases, the RMSE decreases, with an exception of the 10-KL terms case shown in475

Figure 9(d); the RMSE produced by SEIK-KL using 50 members is smaller than that using476

100 members. Again, this is the effect of using a few KL terms, which insufficiently describe477

the search space. This observation is consistent with [70] and [57], who found that using 40478
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KL modes, small ensembles initially performed better, but are eventually outperformed by479

larger ensembles later in the simulation, as larger ensembles provide more exhaustive search480

directions.481

In Figure 10, we show the spatial plots of the inferred Manning’s n coefficients using482

SEIK-KL with varying ensemble sizes and numbers of KL modes. The top row depicts the483

spatial structure of the true Manning’s n field (Figure 10(a)) and the initial guess (Figure484

10(b)), respectively. From the second row downward, each column represents an ensemble485

size and each row represents a number of retained KL modes. We notice that when using 10486

ensemble members, the SEIK filter faces difficulty in recovering the reference field, even with487

a large number of KL terms; the best result is obtained using 10 KL modes (Figure 10(d)).488

When using 50 ensemble members, all SEIK-KL inferences are better than the regular SEIK489

in recovering the Manning’s n field. This is particularly clear in the area of low Manning’s490

n values (cooler colors). When using 100 ensemble members, the filter’s estimate is more491

accurate in all cases. The main Manning’s n structures of the true parameter field are clearly492

recovered.493

5.3. SEIK-KL sensitivity to inaccurate covariance model494

The initial ensembles of the SEIK and the SEIK-KL have thus far been constructed based495

on the same covariance model from which the reference Manning’s n field was generated. In496

many real-world applications, however, the initial covariance model might be poorly known.497

Here we examine the sensitivity of the performance of SEIK and SEIK-KL to perturbations in498

the covariance model used to generate both the initial ensembles of Manning’s n coefficients499

and KL modes and compare the results against those obtained using the true (unperturbed)500

covariance model.501

We first generate new realizations of Manning’s n coefficients from different variogram502

models by perturbing some parameters in GCOSIM3D. 1) we use a Gaussian variogram with503

a range of 100 m in the x and y-directions (a perfect circle), 2) a Gaussian variogram with504

a range of 250 m in the x-direction and 15 m in the y-direction (i.e. the reference variogram505

is stretched in the x-direction and shrunk in y-direction), 3) a Gaussian variogram with506

range of 110 m in the x-direction and 45 m in the y-direction (i.e. the reference variogram is507

shrunk in x-direction and stretched in y-direction), and 4) an Exponential-type variogram.508

In Figure 11, we plot the time-series of the RMSE of the analyzed Manning’s n field as509

estimated by SEIK and SEIK-KL (with 30 KL modes) from the covariance models described510

above using 100 ensemble members. The first observation we make is that the performances511

of SEIK and SEIK-KL degrade when using any of the perturbed variograms. However, the512

degree at which the final RMSEs of the perturbed covariance cases differ from the reference513

case depends on the form of the perturbed covariance. For instance, using an Exponential514

variogram instead of Gaussian variogram (with the same mean, variance and correlation515

length) does not significantly alter the structure of the variogram, and as a result, the final516

RMSEs for the Exponential variogram cases are close to the reference case. The same can517

be said for the case in which we stretch or shrink the correlation range in the x- and y-518

directions (cases (2) and (3)). For the case where the perturbed variogram vastly differs519

from the reference case (i.e. case (1)), the resulting final RMSE is considerably larger than520
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that of the reference case. The second observation is that in most cases with perturbed521

covariance models, the SEIK performs better than SEIK-KL, with the exception of case 3.522

The overall better performance obtained by SEIK is consistent with the results of section523

5.2, where the SEIK-KL was shown to outperform SEIK with small ensembles only (N <524

50).525

In Figure 12, we show the spatial plots of inferred Manning’s n fields as estimated by the526

SEIK and SEIK-KL for different covariance models. The results suggest that for all tested527

covariance models, the filter successfully recovers the main patterns of the true Manning’s528

n coefficients over the studied domain, even for the perfect circle variogram case (1) where529

the inferred field exhibits the largest RMSE compared to the other cases. With sufficiently530

large ensembles, assimilated observations, and retained KL terms, SEIK-KL is capable of531

successfully capturing the main spatial structures of the reference Manning’s n field, even532

when its reduced basis is constructed with imperfect KL-modes.533

5.4. Iterative SEIK (ISEIK) in the full and KL spaces534

Based on the above results, ISEIK is implemented using 100 members, 24 observation535

stations, and 5 days of simulation. The damping factor ω is chosen such that ωj+1 = ωj/2,536

where j is the iteration number, and ω0 = 1. We start by studying the sensitivity of ISEIK to537

the number of iterations by performing 3, 5 and 7 iterations. The results of this experiment538

in terms of RMSE are presented in Figure 14. ISEIK outperforms SEIK in all cases, notably539

reducing the RMSE for both the full-vector and the KL cases. The lowest RMSEs were540

obtained with 5 iterations.541

In Figure 13, we show the spatial plots of the estimates obtained using ISEIK. We notice542

particularly improved parameter recovery in the area of low Manning’s n values compared to543

the regular SEIK. ISEIK also greatly reduces the ratio between the final error and the initial544

error in the right land-locked area. ISEIK in the full or KL spaces performs equally well545

in terms of reducing RMSE in all cases (Figure 14). However, ISEIK-KL seems to better546

recover the spatial patterns of the reference Manning’s field. This can be clearly observed in547

the area of low Manning’s n values, colored in green (Figure 13(e)): the recovered Manning’s548

n structure as estimated by ISEIK in the KL space is more consistent with the reference549

than those produced in the full space. The computational cost of ISEIK is approximately550

the same as the regular SEIK. Thus, only modest increases in computational cost, ISEIK551

with a well-tuned damping factor performs comparably to the regular SEIK when using552

a much larger simulation window; with only 5 days of assimilation time, the final RMSE553

produced by ISEIK is as small as that obtained with the SEIK over 20 days of assimilation554

window.555

6. Conclusions556

We proposed a sequential data assimilation framework to estimate a 2D field of spatially557

varying Manning’s n coefficients in the context of coastal ocean modeling. The proposed558

framework combines a deterministic ensemble Kalman filter (called SEIK), KL decomposi-559

tion, and an iterative update scheme to improve the accuracy of estimation over an unal-560

tered/baseline SEIK filter. Multi-Gaussian initial realizations of the Manning’s n coefficients561
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field are generated using a sequential simulation algorithm. An empirical covariance matrix562

is computed from a sufficiently large number of realizations of Manning’s n fields and used563

to construct KL coordinates representing the parameter in a reduced KL space. The KL564

expansion enhances the parameter search space and helps preserve the geostatistical char-565

acteristics of the parameter in the filter updates when the filter is implemented with a small566

number of ensembles.567

Observation System Simulation Experiments (OSSEs) are conducted to evaluate the568

performance of the proposed framework. Synthetic water elevation data are generated by569

running ADCIRC with a reference Manning’s n field, considered as the truth. SEIK is then570

implemented to estimate the Manning’s n coefficients, both in the full nodally-defined and571

KL parameter space cases. We first study SEIK sensitivity to the ensemble size using the572

full parameter space and find that 100 ensemble members provide a reasonable trade-off573

between the filter performance and computational burden. Local analysis is also applied to574

alleviate the effect of spurious correlations between distant points. Increasing the number of575

observation stations from 15 stations to 24 stations further improves the filter performances.576

SEIK with the full nodally-defined parameter vector proves to be successful at recovering577

the main patterns of the true Manning’s n field in our idealized setting.578

We then conduct the SEIK inference in the KL space. For small ensembles (e.g., 10579

ensembles) and only 10 terms in the KL expansion, a significant improvement is observed580

compared to the results obtained using the regular SEIK filter. We also find that increasing581

the ensemble size requires increasing the number of KL terms in order for the KL-SEIK to582

outperform the regular SEIK. For the case with 100 ensemble members, 30 KL modes are583

required. However, the sensitivity of the filter performance to the number of KL modes584

and the ensemble size is nonlinear. In all cases, the KL-SEIK consistently outperforms the585

regular SEIK when the Manning’s n field is represented using 30 KL terms, which preserves586

almost 100% of the total variance of the parameter space.587

Finally, iterative SEIK (ISEIK) is implemented at almost no additional computational588

cost to enhance the SEIK performances. We apply ISEIK to both the nodally-defined589

parameter vector and KL cases. Even with a small number of iterations (e.g., 3 iterations),590

improvements are clearly observed, with the best results obtained using 5 iterations for both591

the nodally defined and KL cases were.592

Overall, our results demonstrate the relevance of sequential ensemble data assimilation593

filtering schemes for estimating spatially varying parameters in the context of coastal ocean594

modeling. Future work will focus on exploring approaches to further improve our inference595

framework by developing efficient schemes to update and evolve in the KL basis of the596

parameter search space based on incoming data along the method proposed by [102].597
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Figure 2: A few realizations of Manning’s n fields generated by the sequential simulation algorithm. The
101

st realization is taken as the reference field that the inference results are compared against.
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Figure 3: The reconstruction of a Manning’s n field using the truncated KL expansion for various retained
KL modes. The top six subplots: spatial plots of the reconstructed Manning’s n field. The bottommost
subplot: the accumulative sum of the eigenvalues obtained for the KL decomposition.26



  

Figure 4: The results of SEIK inference with 10 ensemble members and localization, (a) the true field, (b)
the initial ensemble mean, (c) the final analysis after 108 updates, and (d) the ratio between the final error
and the initial error.
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Figure 5: Time series of the RMSEs of the Manning’s n fields after each analysis step with respect to the
true Manning’s n field for varying localization distance (ld).
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Figure 6: Time series of the RMSEs of the Manning’s n field after every analysis step. Top panel: the
RMSEs for varying localization distances (ld) with 100 members. Bottom panel: the RMSEs for various
ensemble sizes (N) with the same localization.
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Figure 7: The results of SEIK inference with 100 ensemble members, (a) the true field, (b) the initial
ensemble mean, (c) the final analysis with 15 observation points, (d) the ratio between the final error and
the initial error, (e) the final analysis with 24 observation points and 468 assimilation cycles, and (f) the
ratio between the final error and the initial error, (g) the absolute error between the estimate and the truth
for 24 observation points case, and (h) standard deviation of the ensembles at the final analysis step.
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Figure 8: Time series of the RMSEs of the Manning’s n fields after each analysis step for 100 ensemble
members, different localizations (ld) and different number of observations with respect to the true Manning’s
n field.
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Figure 9: Time series of the RMSEs as results from SEIK and SEIK-KL using varying ensemble sizes and
numbers of retained KL terms. Left column: each figure represents a fixed ensemble size but varying number
of retained KL terms. Right column: each figure represents a fixed number of retained KL terms but varying
ensemble size
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Figure 10: Manning’s n field estimates as inferred by different ensemble sizes and number of retained KL
modes
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Figure 11: Time series of the RMSEs of the Manning’s n fields inferred from initial ensembles generated
from various variogram models.
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Figure 12: Inferred Manning’s n fields when various variogram models are used to generate the initial
ensembles in KL space.
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Figure 13: Inferred Manning’s n fields. 1
st row: spatial plots of regular SEIK inference, 2nd row: spatial

plots of ISEIK inference with 5 iterations, 3rd row: spatial plots of ISEIK-KL inference with 5 iterations.
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Figure 14: Time-evolution of the RMSE of Manning’s n field as inferred by the regular SEIK (in black) and
iterative SEIK with various stopping criteria.
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