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ABSTRACT

Pedestrian Flow in the Mean Field Limit

Abdul Lateef Haji Ali

We study the mean-field limit of a particle-based system modelling the behaviour

of many indistinguishable pedestrians as their number increases. The base model is

a modified version of Helbing’s social force model. In the mean-field limit, the time-

dependent density of two-dimensional pedestrians satisfies a four-dimensional integro-

differential Fokker-Planck equation. To approximate the solution of the Fokker-

Planck equation we use a time-splitting approach and solve the diffusion part using a

Crank-Nicholson method. The advection part is solved using a Lax-Wendroff-Leveque

method or an upwind Backward Euler method depending on the advection speed.

Moreover, we use multilevel Monte Carlo to estimate observables from the particle-

based system. We discuss these numerical methods, and present numerical results

showing the convergence of observables that were calculated using the particle-based

model as the number of pedestrians increases to those calculated using the probability

density function satisfying the Fokker-Planck equation.
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Chapter I

Introduction

Developing an efficient design of an environment where humans are involved requires a

deep understanding of human behaviour, whether this design is for a hospital building,

a shopping mall, an escape route or even a computer game. This is why crowd

modelling and simulation are important tools for analysts to run mock experiments,

to plan real ones and to observe how humans may behave in a crowd.

Crowd models can be divided into three broad categories [2]: Particle-based, cel-

lular automata-based and continuous. Particle-based models are the oldest, most

obvious and most popular [3–6]. In these discrete models, each individual is modelled

by a particle whose dynamics are coupled to the dynamics of all other individuals

(particles) in the system. Cellular automata-based models [7,8], also discrete, model

the space instead as a lattice of cells, where each cell can attain different states based

on interaction with other neighbouring cells.

On the other hand, continuous models are at the other end of the modelling spec-

trum. In addition to being able to model a larger number of pedestrians, continuous

models allow for the use of the already established analytical techniques of partial dif-

ferential equations (PDEs) to understand the behaviour of the model without actually

solving it.
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Hughes [9] models the movement of pedestrians as a fluid, as it was observed that

displacement of pedestrians resembles a flow of fluid to a great extent [10]. This

model was also used in traffic problems with great success and is in fact very similar

to the model derived in this project. However, this model was postulated based

on some intuition of the crowd dynamics and not motivated from other, more basic

models. In contrast, the work [11] uses techniques from game theory to find the

path that each pedestrian takes by optimizing a cost function that assigns a high

cost to penetrating obstacles or other pedestrians and a high payoff to reaching the

individual’s goal. A drawback of the model in [11] is that it assumes that pedestrians

have global knowledge of the environment and the state of all other pedestrians in

order to find an optimal path to their goal.

The basic idea of this project is to take an already established and relatively basic

discrete crowd model, and investigate its limit as the number of pedestrians increases,

called a mean-field limit. This is similar to what Bolley et. al [12] did with Cucker-

Smale [13] models of animal flocking. As the underlying discrete model we chose the

social force model introduced by Helbing [1]. This is a particle-based model that

describes the dynamics of each individual by a stochastic differential equation (SDE)

that depends on a local neighborhood of that individual and the individual’s goal.

Moreover, the SDE of each individual is coupled to the SDEs of other individuals.

We chose this model because it was observed to reproduce many phenomena of crowd

flow as it was compared against data from the real world [1, 3, 4, 14].

We will be looking at two cases. CaseI is a one-dimensional test case in which

pedestrians move clockwise on a circle with no obstacles. One the other hand, CaseII

is a more realistic two-dimensional case in which pedestrians move towards a fixed

target in a fixed environment with obstacles.

This thesis first presents a brief overview of the theory of SDEs, the Fokker-Planck

equation and mean-field limits in Chapter II. In that chapter we also review Helbing’s
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model and propose necessary modifications to it. The chapter concludes by looking

at the model formulation in the mean-field limit. Chapter III then proceeds to dis-

cuss the different computational methods that are used to find approximate solutions

to both the modified Helbing’s particle-based model and the continuous mean-field

model. Chapter IV presents convergence studies of the numerical solutions of both

models. In that chapter we present plots that show convergence of quantities of

interest or observables approximated using the particle-based model to those approx-

imated using the continuous, mean-field limit. We also discuss the computational

difficulties in CaseII . In Chapter V we look at a possible extension of the multilevel

Monte Carlo method that utilizes the convergence of the particle-system to a mean-

field to efficiently compute observables from the mean-field. Finally in Chapter VI

we conclude by summarizing and discussing future work.



Chapter II

Theory

II.1 Background

In this section we give a brief overview and definitions of basic theoretical concepts

that we will use in this project.

II.1.1 Itô Stochastic Differential Equations

The following review is taken from [15, 16], where more details and proofs can be

found.

Wiener Process

The one-dimensional Wiener process W (t) is a random process defined to have the

following properties:

1. With probability 1, the mapping t→ W (t) is continuous and W (0) = 0.

2. For any final time T and time discretization 0 = t0 < t1 < · · · < tK = T , the

increments

W (tK)−W (tK−1), · · · ,W (t2)−W (t1),W (t1)−W (t0)

13
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are independent.

3. For all t > s the increment W (t)−W (s) ∼ N (0, t− s). That is, the increment

W (t) − W (s) is a random variable that has a normal distribution with zero

mean and variance t− s.

Such a process can be proven to exist [15]. Usually we are interested in sampling the

Wiener process on a finite set of points. The previous properties imply that this can

be achieved by sampling random independent increments from a normal distribution

with the correct mean and variance.

Strong and weak convergence

We say that a sequence of d−dimensional random variables {xn}∞n=0 converges weakly

or in law to x and write xn
L−→ x if

lim
n→∞

E {g(xn)} = E {g(x)} , (II.1)

for all continuous and bounded scalar functions g, where E {·} denotes an expectation.

On the other hand, we say that {xn}∞n=0 converges strongly or in mean square to x

and write xn
L2

−→ x if

lim
n→∞

E
{
‖xn − x‖2

}
= 0. (II.2)

Note that strong convergence implies weak convergence but the converse is not true

in general.
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Itô Stochastic Integrals

Given h > 0 define a time discretization 0 = th,0 < th,1 < · · · < th,K = T such that

maxn(th,n+1 − th,n) < h. Assume that a function f is Lipschitz, i.e., f satisfies

|f(t)− f(s)| ≤ C|t− s|, (II.3)

for some positive constant C and all t, s ≥ 0. Also let ∆Wh,i = W (th,i+1) −W (th,i).

Then the limit of the following forward Euler discretization

Îh(T ) =
K∑
i=0

f(th,i)∆Wh,i, (II.4)

as h→ 0 is defined to be the Itô stochastic integral and is written as

I(T ) =

∫ T

0

f(t) dW (t), (II.5)

It can be proven that such a limit exists (cf. [15]) and the sequence of forward Euler

discretizations Îh(T ) converges strongly to I(T ) as h→ 0.

Itô Stochastic Differential Equations

Assume that the functions a(x, t) and b(x, t) satisfy, for all x, y ∈ R and t, s ∈ [0, T ]

for some final time T , the following conditions:

|a(x, t)− a(y, t)| ≤ C|x− y|, (II.6a)

|b(x, t)− b(y, t)| ≤ C|x− y|, (II.6b)

|a(x, t)− a(x, s)|+ |b(x, t)− b(x, s)| ≤ C(1 + |x|)
√
|t− s|, (II.6c)
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for some positive constant C. Also, let X(t) be a stochastic process that satisfies the

following equation for all t ∈ [0, T ]

X(t) =
◦
X +

∫ t

0

a(X(s), s) ds+

∫ t

0

b(X(s), s) dW (s), (II.7)

Then we write this equation in differential form as

dX(t) = a(X(t), t) dt+ b(X(t), t) dW (t), (II.8a)

X(0) =
◦
X. (II.8b)

and call it a stochastic differential equation (SDE). Moreover, X satisfies

max
t>0

E
{

(X(t))2} <∞. (II.9)

For brevity, we might sometimes drop the argument t from X(t) and dW (t) when it

is apparent from the context. We refer to the dt term as the advection or drift term,

while the dW term is referred to as the noise or diffusion term.

Multidimensional SDEs

Let X(t) be a d−dimensional stochastic process and assume that a and b are also

d−dimensional and satisfy (II.6). Then we extend the previous definition of a one-

dimensional SDE to higher dimensions by writing

dX(t) = a(X(t), t) dt+ diag(b(X(t), t)) dW(t), (II.10a)

X(0) =
◦
X. (II.10b)

Here W ∈ Rd is a vector of independent Wiener processes and diag(x) is the square

matrix whose diagonal is the vector x.
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Fokker-Planck Equation

Given a time t, let ρ(t,x) be the probability distribution function (pdf) of the

d−dimensional random variable X(t) taken from the random process that satisfies

the SDE (II.10). Then, assuming a and b are sufficiently regular, the function ρ(t,x)

satisfies the Fokker-Planck initial-value problem (IVP) [15]

∂tρ+∇x · (aρ)− 1

2
∇2

x(bTbρ) = 0, t ≥ 0, x ∈ Rd, (II.11a)

ρ(0,x) =
◦
ρ(x), (II.11b)

where
◦
ρ is the pdf of the random variable

◦
X, the initial condition of (II.10). Here

∇x · a is the divergence of the vector a. On the other hand, ∇2
x(s) is the Laplacian

of the scalar s. That is

∇x · a =
∑
i

∂xiai, (II.12a)

∇2
xs =

∑
i

∂2
xi
s. (II.12b)

where ∂x(·) and ∂2
x(·) denote the first and second partial derivative with respect to x,

respectively.
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II.1.2 Mean-Field Limit

Consider an SDE system of 2P coupled equations in Rd describing P interacting

particles, where for each particle i we have

dXi(t) = Vi(t) dt, (II.13a)

dVi(t) =

F(Xi(t),Vi(t)) +
1

P

P∑
j=1
j 6=i

H(Xi(t)−Xj(t),Vi(t)−Vj(t))

 dt

+ σ(Xi(t),Vi(t)) dWi(t), (II.13b)

Here σ is a scalar and Wi(t) is a vector of d independent Wiener processes. Moreover,

Xi and Vi are the position and velocity of particle i, respectively. We call the F term

a self-drift term, while we refer to the H term as a coupling term. Also, the ini-

tial states of each particle (Xi(0),Vi(0)) are independent and identically distributed

with a common law
◦
ρ(x,v). In other words, the particles are indistinguishable and

exchangeable because of the symmetry of initial states and of the evolution of these

states. Formally (cf. [17]), a sequence of P random variables {xi}Pi=1 is said to be

exchangeable if the joint law of (xπ(0), xπ(1), · · · , xπ(P )) is the same as the joint law

of (x0, x1, · · · , xP ) for any permutation π of the indices {1, 2, · · · , P}. A trivial ex-

ample is if {xi}Pi=1 are independent and identically distributed then the sequence is

exchangeable.

Next if we define the empirical random measure ρP as

ρP (t,x,v) =
1

P

P∑
i=1

δ(x−Xi(t),v −Vi(t))), (II.14)
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where δ is a Dirac delta function. Then we can write the coupling term as

1

P

P∑
j=1

H(Xi(t)−Xj(t),Vi(t)−Vj(t))

=

∫
Rd

∫
Rd

H(Xi(t)− x,Vi(t)− v)ρP (t,x,v) dx dv

=
(
H ∗ ρP (t, ·, ·)

)
(Xi(t),Vi(t)), (II.15)

where H ∗ ρP is the convolution between H and ρP .

Assuming sufficient conditions on the initial condition, and on the functions F,H

and σ and given the indistinguishability of particles it is reasonable to expect that as

the number of particles increases the system reaches a limit that we call a mean-field

limit. Moreover, it is reasonable to expect that the empirical measure ρP will converge

to a pdf ρ(t,x,v) of a generic particle being in a specific position x and velocity v.

The convergence of ρP to ρ is weak convergence in the sense that for all continuous

and bounded functions g the following holds

lim
P→∞

∣∣∣∣∫
Rd

∫
Rd

g(x,v)
(
ρP (t,x,v)− ρ(t,x,v)

)
dx dv

∣∣∣∣ = 0. (II.16)

Given such a pdf ρ we look at the system of P particles each described by the

following SDE system

dX(t) = V(t) dt, (II.17a)

dV(t) =
{
F(X(t),V(t)) + (H ∗ ρ(t, ·, ·)) (X(t),V(t))

}
dt

+ σ(X(t),V(t)) dW(t), (II.17b)

Observe that all particles satisfy the same SDE system, however the initial state and

noise path driving each particle are independent of the initial states and noise paths

driving all other particles. Most importantly, observe that while the dimensionality
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of (II.13) is 2P , the dimensionality of the system (II.17) is only 2. This is a huge

reduction of dimensionality that justifies approximating the solution of the system

(II.13) by the solution to (II.17). Moreover, ρ satisfies the nonlinear integro-PDE,

Fokker-Planck equation (cf. Section II.2.3)

∂tρ = −v · ∇xρ−∇v ((F + H ∗ ρ)ρ) +∇2
v (σρ) , (II.18a)

ρ(0,x,v) =
◦
ρ(x,v), (II.18b)

t ≥ 0, x ∈Rd, v ∈ Rd, (II.18c)

For example, Bolley et al. [12] proved the existence and uniqueness of such a limit

for the specific case when σ(x,v) =
√

2 and the following boundedness and locally-

Lipschitz assumptions

v · F(x,v) ≤ C(1 + |v|2), (II.19a)

(v −w) · (F(x,v)− F(x,w)) ≤ L|v −w|2(1 + |v|p + |w|p), (II.19b)

|F(x,v)− F(y,v)| ≤ L|x− y|(1 + |v|p), (II.19c)

|H(x,v)| ≤ C(1 + |v|), (II.19d)

|H(x,v)−H(y,w)| ≤ L(|x− y|+ |v −w|)(1 + |v|p + |w|p), (II.19e)∫
Rd

∫
Rd

(
|x|2 + e|v|

p′) ◦
ρ(x,v) dx dv < +∞, (II.19f)

hold for all x,y,v,w ∈ Rd and some positive constants C,L and 0 < p ≤ 2 and

p ≤ p′. Moreover, in this case, Bolley et al. proved the existence and uniqueness

of a solution to (II.18). They also proved that the rate of strong convergence of the

particles from system (II.13) to the corresponding ones in (II.17) is of O(P ε−1) for

any 0 < ε < 1 as P →∞. This means

E
{
‖Xi(T )−Xi(T )‖2 + ‖Vi(T )−Vi(T )‖2

}
= O(P ε−1), (II.20)
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for i = 1 · · ·P and any final time T <∞. Here it is assumed that the initial condition

of both particles is the same

Xi(0) = Xi(0), (II.21a)

Vi(0) = Vi(0), (II.21b)

and the same driving noise in Vi(t) and Vi(t) is used. Finally, the expectation in

(II.20) is taken with respect to the measure of the initial conditions and the driving

noise.

II.2 Model Formulation

This section discusses different models for crowd simulation in one and two dimen-

sions. Recall that CaseI is a test case in which pedestrians move clockwise on a

circle with no obstacles. In the more realistic CaseII , pedestrians move towards a

fixed target in a fixed environment (see Figure II.1). In Section II.2.1 we review the

general particle-based model introduced by Helbing [1]. This model is based on the

concept of psychological forces, i.e., non-physical forces that drive pedestrians away

from each other and from obstacles. A few modifications to the general model are

suggested and justified in Section II.2.2. Some of these modifications are necessary

for the mean-field limit to exist as the number of pedestrians increases. Other mod-

ifications are introduced to make the analysis easier. Section II.2.3 formulates and

discusses the mean-field limit in both CaseI and CaseII .
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Figure II.1: Typical environment in CaseII . The blue areas are obstacles and the exit
is through the opening in the right wall.

II.2.1 Helbing Particle-Based Model

In [1], Helbing proposed the following model for pedestrian α

dxα = vα dt, (II.22a)

dvα =

Find
α (xα,vα) +

P∑
β=1
β 6=α

J(xβ)Fpair
αβ (xα,vα,xβ,vβ)

 dt+ ξα(t) dt, (II.22b)

where xα and vα are the position and velocity of pedestrian α, respectively. Here, Find
α

is the sum of forces related to a single pedestrian, and Fpair
αβ is the sum of forces that

come from the interactions between two pedestrians α and β. Moreover, J(xβ) is an

indicator function that is one if the pedestrian β is interacting with other pedestrians

and zero otherwise. For example, in CaseII , J is one if the pedestrian has not exited

the room yet. In CaseI , J is always one. In Helbing model, ξα is a random process

that adds fluctuations to the movement of pedestrian α. In his works, Helbing only
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specifies that the random process ξα should be independent of other processes added

to movement of other pedestrians. However, in the code that he generously provided,

this process is implemented by adding independent increments to each time step in

the Forward Euler method. Similar to a Wiener process, these increments are scaled

by
√

∆t, where ∆t is the uniform step size of the Forward Euler approximation.

However, they are sampled from a truncated Gaussian distribution with parameters

(0, σα) in the interval [−σαηα, σαηα] for some constant ηα.

Find
α is split further into forces that come from the interaction of a pedestrian with

obstacles and a force Ftrg
α that drives the pedestrian to his target

Find
α (xα,vα) = Ftrg

α (xα,vα) +
∑
µ

Iµ(xα)Fobs
αµ (xα,vα), (II.23)

where Fobs
αµ is the psychological force of obstacle µ acting on pedestrian α and Iµ(x)

is one if a pedestrian at x is affected by the obstacle µ and zero otherwise. On the

other hand, the target force is

Ftrg
α (xα,vα) =

1

τα
(v0,αeα(xα)− vα) . (II.24)

Here the parameter τα > 0 is the relaxation time. A larger relaxation time means

that the pedestrian is less aggressive in going in the direction of his destination eα.

Also, v0,α > 0, assumed constant, is the desired speed that pedestrian α wishes to

move with. Observe that the target, as defined by eα, does not need to be a fixed

point as long as it is a function of the pedestrian’s position. This can model, for

example, pilgrims circling around the Kaaba, although in that case more work needs

to be done to track the number of rounds each pilgrim makes. One way to do this

is by adding that information as an additional state variable for each pedestrian and

then add more SDEs to describe the evolution of the new state variables. This of

course would increase the dimensions of the SDE system.
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Each pedestrian α is modelled by a circle with radius rα. The interactions between

two pedestrians Fpair
αβ , or between a pedestrian and an obstacle Fobs

αµ , are described

using the same rule, denoted by Fint
ij . Let nij be a unit normal vector from i to j,

and tij a unit vector orthogonal to nij. Also, let Dij be the signed distance between

i to j along nij (see Figure II.2). This distance is positive if objects i and j do not

intersect, and negative otherwise. Finally, let vi and vj be the velocities of i and j,

and let the velocity of a static obstacle be 0. Then we define

Fint
ij = θ(R−Dij)F

psy
ij + θ(−Dij)

[
Fbdy
ij + Ffrc

ij

]
(II.25a)

Fpsy
ij = Ae−Dij/B nij (II.25b)

Fbdy
ij = −2CDij nij (II.25c)

Ffrc
ij =


−γ [(vi − vj) · tij] tij or,

κDij [(vi − vj) · tij] tij

(II.25d)

given A,B,C,R, γ and κ are positive constants. Observe that the constants that

describe the forces might be different for each of the two cases: pedestrian-pedestrian

interaction and pedestrian-obstacle interaction. Moreover, θ here denotes the Heavi-

side function, that is

θ(x) =


0 x < 0,

1 x ≥ 0.

(II.26)

Observe that Fpsy
ij is a psychological force that is activated if the other object

is within an interaction radius R. This force pushes pedestrians away from each

other and from obstacles and decays exponentially as the distance between them,

Dij, increases. On the other hand, Fbdy
ij and Ffrc

ij are the body force and the sliding

friction force, respectively. They are activated only if Dij is less than or equal to

zero; that is, only when a pedestrian makes contact with another pedestrian or with
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an obstacle. This makes those forces essential in escape situations, where contact

between pedestrians is expected. The body force counteracts body compression in

the normal direction, while the friction force opposes relative tangential motion. Note

that Helbing suggests two choices for the friction force, one that depends on the

distance Dij and one that does not.

i j k

D ij D jk

r
i

Figure II.2: Signed distance between two circles modelling two pedestrians. Here Dij

is positive and Djk is negative.

Finally, the pedestrian model described until now allows for unlimited velocities of

pedestrians. Helbing removes this unphysical behaviour by applying a post-processing

step to the forward Euler scheme solving (II.22) to cut-off the velocities within a given

maximum speed smax. This is essentially a projected Euler method [18].

II.2.2 Modified Particle-Based Model

In this section we modify the model (II.22) so that it is of the form (II.13). We begin

by ensuring the interchangeability of the particles evolution by sampling the initial

positions and velocities from the same initial distribution
◦
ρ and choosing common

parameters for all pedestrians

σα = σ, τα = τ, v0,α = v0, rα = r.

Similarly, all rules must be symmetric so they will be written as fα(xα,vα) = f(xα,vα).

These interchangeability or indistinguishability restrictions may be relaxed by intro-
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ducing groups or by including the different parameters in the system state, with

dynamics describing the evolution of these parameters. This generalization is beyond

the scope of this project.

Moreover, looking at (II.22), the second term in the advection of (II.22b) is the

only term coupling different pedestrians. In that term, Fpair has contributions from

three forces Fpsy,Fbdy and Ffrc, all of them discontinuous since they are multiplied by

Heaviside functions (see (II.25a)). This makes these forces inherently local and will

violate the assumptions in (II.19) even for bounded domains. For these reasons we

drop the Fbdy and Ffrc terms. We also drop the multiplication of Fpsy by a Heaviside

function. Instead, the interaction is assumed to decay smoothly and exponentially

as the distance increases; as is the case for the current definition of the psychological

force (II.25b). This has the same effect of a limited interaction radius. In summary,

we propose the simplification Fpair
αβ = Fpsy

αβ .

Another modification to the second term in the advection of (II.22b) is also nec-

essary to ensure that it is of the form (II.13b), namely we need to normalize the

coupling term by the number of interacting pedestrian in the system PJ ≤ P defined

as

PJ =
P∑
β=1

J(xβ), (II.27)

From a modelling perspective, this can be justified by arguing that pedestrians tend

to increase their social circle when there are few pedestrians in the same area. When

many pedestrians are present, they tend to accept small social circles.

Also, instead of using the random process ξα we will use the standard Wiener

process Wα. This will allow us to use the established theory discussed in Sections

II.1.1 and II.1.2.

Next we replace the post-processing step of Helbing to bound the velocities by a

continuous decay of the advection and diffusion term in (II.22b). This is justified by

arguing that the acceleration of pedestrians is decreased even before the maximum
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speed is attained. Moreover, this will eliminate the need for any boundary conditions

in the model and will greatly simplify the analysis. We achieve the continuous decay

by multiplying the advection and diffusion terms in (II.22b) by a scalar function ϕ

that takes values on [0, 1]. This is a function of how close the velocity can get to

the maximum speed given that the particle is subject to diffusion or advection in a

specific direction.

Summing up, the final modified particle-based system becomes

dxα = vα dt, (II.28a)

dvα = ϑ(X,V,xα,vα) dt+ ς(vα) dWα, (II.28b)

ϑ(X,V,xα,vα) = ϕ (δa (vα, ǎ(X,V,xα,vα))) a(X,V,xα,vα), (II.28c)

ς(vα) = σϕ (δd(vα)) , (II.28d)

a(X,V,xα,vα) = Find(xα,vα)− 1

PJ
J(xα)Fpsy(xα,xα) +

1

PJ

PJ∑
β=1

J(xβ)Fpsy(xα,xβ),

(II.28e)

with the same definition of Find,Fpsy and J as before and where X,V are vectors

containing the positions and velocities of all particles, respectively. Here ǎ is defined

as a normalization of a, that is ǎ = a
‖a‖ . Moreover, ϑ and ς denote the modified drift

and noise coefficients, respectively. Note that Fpsy depends only on the positions not

velocities of pedestrians. We also choose ϕ for some value of ζ > 0 as follows

ϕ(t) =


0, t ≤ 0,

exp
(−ζ
t2

)
, t > 0;

(II.29)

see for instance Figure II.3.

The function δd measures how close the velocity can get to the maximum imposed

speed given that it is subject to diffusion. Since the diffusion term is symmetric, i.e.
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Figure II.3: Cut-off function ϕ for different values of the parameter ζ.

it is the same in all directions, δd is simply taken to be

δd(v) = max (0, smax − ‖v‖), (II.30)

regardless of the diffusion coefficient. On the other hand δa measures how close the

velocity can get to the maximum imposed speed given that it is subject to advection

in a specific direction ǎ. In CaseII , δa(v, ǎ) is defined as the distance along the unit

vector ǎ between the velocity v and the circle of radius smax, see Figure II.4, namely

δa(v, ǎ) =


0 ,∆ ≤ 0,

max (0,−va1 − wa2 +
√

∆) ,∆ > 0,

(II.31a)

with ∆ = s2
max + 2a1a2vw − w2 + (w2 − v2)a2

2, (II.31b)

where v = [v, w] and ǎ = [a1, a2]. Note that the distance is assumed to be zero if the
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vector from v along ǎ does not intersect the circle of radius smax. In Figure II.4, even

though v2 has a magnitude greater than smax, the advection will tend to decrease the

value of ‖v2‖. Therefore v2 is considered to be “far” from the maximum speed smax

and the advection is not reduced. On the other hand, δa(v3, ǎ) = 0 and the advection

is reduced to zero, since in this case the unmodified advection will increase the value

of ‖v3‖.

v1

v2
v3

a

sm
ax

∆a

∆a

v

w

v

w

Figure II.4: Left: δa shown at three velocities in the direction of ǎ. Note that
δa(v3, ǎ) = 0 since the vector from it in the direction of ǎ does not intersect the
circle. Right: Modified advection field

In CaseI there are only two directions so ǎ ∈ {−1,+1} and we define

δa(v, ǎ) = max (0, smax − ǎv). (II.32)

Observe that with these choices of ϕ, δd and δa and if we also assume that the

initial value of vα satisfies ‖vα(0)‖ ≤ smax then ‖vα(t)‖ ≤ smax for all t.

One last detail is in CaseI where we model pedestrians moving on a circle. In this

case, care must be taken in calculating the normal vector and the distance between

two pedestrians. Specifically, such calculations must be done on a circle instead of on
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a line. If the circle on which the pedestrians move has perimeter xmax then

ν(xα, xβ) = mod(xα − xβ +
xmax

2
, xmax)− xmax

2
, (II.33a)

nαβ = sgn(ν(xα, xβ)), (II.33b)

Dαβ = |ν(xα, xβ)| − (rα + rβ), (II.33c)

where sgn(·) is the signum function and mod(·, ·) is the modulo function defined as

mod(a, b) = a−
⌊a
b

⌋
b, (II.34)

here b·c is the floor function.

II.2.3 Mean Field Limit

The system (II.28) is of the same form as the system (II.13) with Find = F and

Fpair(xα, xβ) = H(xα − xβ). Except for the fact that, in CaseII , the coupling term

is divided by PJ instead of the total number of particles P . Also, observe that

here H does not depend on the velocity difference. Recall that as the number of

particles increases the underlying empirical measure ρP (cf. (II.14)) of the system

(II.13) converges to a marginal distribution ρ describing the state of a generic particle.

However, this convergence required certain assumptions on the functions F and H,

namely (II.19). Looking at H = Fpsy we note that it satisfies the necessary conditions

(II.19d) and (II.19e) since the distance between two pedestrians is bounded. However,

F = Find fails to satisfy the condition (II.19c) because of the discontinuous indicator

function Iµ in the definition of Find, cf. (II.23). With these differences in mind, we

look at the limit marginal distribution ρ. Indeed, if it exists then it should satisfy the
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nonlinear Fokker-Planck equation (analogous to (II.18))

∂tρ = −v · ∇xρ−∇v · (ϑρ) +
1

2
∇2

v

(
ς2ρ
)
, (II.35a)

t > 0, x ∈ Rd, v ∈ Dv = [−smax, smax]d ,

ϑρ−∇vn

(
ς2ρ
) ∣∣∣

∂Dv

= 0 (II.35b)

ρ(0,x,v) =
◦
ρ(x,v), (II.35c)

ϑ(x,v, [ρ]) = ϕ (δa (v, ǎ(x,v, [ρ]))) a(x,v, [ρ]), (II.35d)

ς(v) = σϕ (δd(v)) , (II.35e)

a(x,v, [ρ]) = Find(x,v) + Fpsy ∗ ρJ,x(t,x, [ρ]), (II.35f)

ρJ,x(t, x̄, [ρ]) =
J(x̄)

∫
Dv
ρ(t,v, x̄) dv∫

Rd J(x)
∫
Dv
ρ(t,v,x) dv dx

. (II.35g)

Observe that v is in [−smax, smax]d only since the original stochastic process satisfies

‖v(t)‖ ≤ smax for all t. Here, δDv is the boundary of the domain Dv and ∇vn is the

normal derivative in the v−dimension. Finally, note that the argument [p] was added

to the definition of a and ϑ to indicate their dependence on the underlying marginal

pdf.



Chapter III

Numerical Simulations and

Solutions

In this chapter we describe the numerical methods that are used to solve the particle-

based model (II.28) and the continuous model (II.35) in both CaseI and CaseII .

III.1 Computational Methods

In this section we discuss the basic concepts of the used computational methods in

a relatively general setting. The discussion in this chapter regarding PDEs and their

numerical methods is taken from [19–21], where more details can be found. Also, the

discussion about numerical methods of SDEs and Monte Carlo methods can be found

in [15,16].

III.1.1 Numerical Schemes for Solving PDEs

First, we focus on the simpler one-dimensional PDEs and later discuss how we can

extend these methods to multidimensional PDEs. Here, one-dimensional PDEs refer

to time-dependent PDEs in one space dimension. In this thesis, we mainly look at

32
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two basic PDEs

∂tq + ∂x(aq) = 0, x ∈ [xstart, xend] ⊆ R, (III.1)

∂tq − ∂2
x(dq) = 0, x ∈ [xstart, xend] ⊆ R, (III.2)

with zero influx boundary conditions and an initial profile of q. The first PDE (III.1)

is an advection equation with variable coefficient a(x) written in conservative form.

The second equation (III.2) is a diffusion equation with variable coefficient d(x).

We discretize the domain [xstart, xend] ⊆ R of the space variable x into Nx cells

with cell centers xi and cell edges xi−1/2 and xi+1/2 for the i’th cell, where i =

0, 1, 2, · · · , Nx− 1. The discretization is assumed to be uniform with mesh size ∆x =

(xend − xstart)/Nx. Therefore

xi−1/2 = xstart + i∆x, (III.3)

xi+1/2 = xstart + (i+ 1)∆x, (III.4)

xi = xi−1/2 +
∆x

2
. (III.5)

We also assume a time discretization 0 = t0 < t1 · · · < tK = T for some final time T

and denote the step size ∆tk = tk − tk−1 and the maximum step size ∆t = maxk ∆tk.

We use two different methods to obtain a numerical approximation to the solution

of the PDE (III.1). The first is a first order, implicit, method of lines approach

obtained by approximating the spatial derivatives in the upwind direction and then

using backward Euler to integrate in time. Therefore, we approximate

∂x(a(x)q(t, x))|x=xi =


a(xi)q(t,xi)−a(xi−1)q(t,xi−1)

∆x
+O(∆x), a(xi) > 0,

a(xi+1)q(t,xi+1)−a(xi)q(t,xi)
∆x

+O(∆x), a(xi) < 0,

(III.6)

where a is assumed to preserve sign throughout the whole domain. If we also assume
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zero flux at xstart or xend, depending on the sign of a, then we have

∂x(a(x)q(t, x))|x=x0 =
2a(x0)q(t, x0)

∆x
+O(∆x), if a(x0) > 0, (III.7)

∂x(a(x)q(t, x))|x=xNx−1
=

2a(xNx−1)q(t, xNx−1)

∆x
+O(∆x), if a(xNx−1) < 0.

(III.8)

Then we set up the resulting system as

q(t) =

[
q(t, x0) q(t, x1) · · · q(t, xNx−1)

]T
, (III.9)

A = diag

([
a(x0) a(x1) · · · a(xNx−1)

])
, (III.10)

q′(t) = −DAq(t) +O(∆x), (III.11)

D =
1

∆x



2

1 1

1 1

. . . . . .

1 1


︸ ︷︷ ︸

a>0

or
1

∆x



1 1

1 1

. . . . . .

1 1

2


︸ ︷︷ ︸

a<0

. (III.12)

Denoting qk ≈ q(tk) we find the numerical approximate solution to the system of

ordinary differential equations (ODEs) (III.11) using backward Euler

qk+1 = qk −∆tk+1DAqk+1. (III.13)

This method, which we will refer to as upwind Backward Euler (uBE), is consistent

and stable for any ∆t > 0, cf. [20]. However, it has high numerical diffusion and

is only first order accurate in time and space. Moreover, in higher dimensions it is

relatively expensive since it requires solving a linear system in each step. Of course,

such operations can be optimized by factorizing the matrix once and then using that
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factorization to solve the system efficiently in subsequent time steps, assuming that

the advection speed a does not depend on time and that uniform time stepping is

used, i.e. ∆tk = ∆t for all k.

Another method that we will also use to solve the advection equation (III.1) is

the explicit Lax-Wendroff-Leveque method with the Riemann solver for the conser-

vative, variable coefficient advection equation, both discussed in detail in [19]. This

method is second order accurate in space and time, conservative, non-oscillatory and

has minimal numerical diffusion. Moreover, it does not require a to preserve sign.

However, to be stable it has to satisfy the CFL condition, namely

∆t ≤
(

max
x
|a(x)|

)
∆x. (III.14)

We use the clawpack implementation of this method and its python front-end, pyclaw

[22].

To obtain a numerical approximation to the solution of the PDE (III.2), we use the

implicit Crank-Nicolson (CN) method [20]. This method is based on the method of

lines and it is obtained by approximating the spatial derivatives by centered differences

and then using the trapezoidal method to integrate in time. Using similar notation

as before we write the CN method as

D = diag

([
d(x0) d(x1) · · · d(xNx−1)

])
, (III.15)

(I − 1

2
∆tkD2D)qk+1 = (I +

1

2
∆tkD2D)qk, (III.16)

D2 =



1 1

1 2 1

. . . . . . . . .

1 2 1

1 1


. (III.17)
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The CN method is second order accurate in space and time, stable for any ∆t and has

no numerical second-order diffusion. However, it can be highly oscillatory if applied to

an advection equation with high advection speeds and, like the uBE method, requires

solving a linear system at each time step.

We now consider multidimensional PDEs. We discretize each dimension using

similar ideas to those already discussed in one-dimensional PDEs, and tensorize all

discretizations to obtain a multidimensional grid. Then, extending CN and uBE

method on this multidimensional grid is relatively straightforward. Leveque also

discusses the multidimensional extension of the Lax-Wendroff-Leveque method in [19].

Another method for solving these multidimensional PDEs using one-dimensional

schemes is dimensional splitting [20]. Dimensional splitting is a form of fractional

step methods to solve more complicated PDEs by combining solution of their simpler

parts. To present the method, consider the PDE

∂tq + F(q) + G(q) = 0, (III.18)

for two operators F and G. For example, if F(q) = ∂x(aq) and G(q) = ∂2
x(dq) then

(III.18) is an advection-diffusion equation. If q is a function of two space variables

x and y and F(q) = ∂x(axq) and G(q) = ∂y(ayq) then (III.18) is a two-dimensional

advection equation. The fractional step method works by solving the following two

PDEs

∂tq1 + F(q1) = 0, (III.19a)

∂tq2 + G(q2) = 0, (III.19b)

in succession from tk to tk+1, with appropriate boundary conditions that we discuss
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later, and the following initial conditions

q1(tk, ·) = q̂(tk, ·), (III.20a)

q2(tk, ·) = q1(tk+1, ·), (III.20b)

q̂(tk+1, ·) = q2(tk+1, ·), (III.20c)

where q̂(tk, ·) is an approximation of the solution q(tk, ·) to (III.18). The order of

solving these two PDEs is arbitrary and can be reversed. In dimensional splitting

each part is solved for each coordinate value of the other dimension. Returning to

the two-dimensional advection equation example the first part

∂tq1 + ∂x(a(x, yi)q1(t, x, yi)) = 0, (III.21a)

q1(tk, ·, yi) = q̂(tk, ·, yi), (III.21b)

is solved for each yi in the multidimensional grid with appropriate boundary condi-

tions. Moreover, the second part

∂tq2 + ∂y(a(xi, y)q2(t, xi, y)) = 0, (III.22a)

q2(tk, xi, ·) = q1(tk+1, xi, ·), (III.22b)

is solved for each xi with appropriate boundary conditions. Imposing appropriate

boundary conditions on the separate parts that are consistent with the imposed

boundary condition on the original PDE can be nontrivial. Sometimes the bound-

ary conditions can be naturally split. For example, in multidimensional problems we

might have different, already split boundary conditions imposed on the boundaries

of each dimension. Also for relatively simple PDEs and associated simple boundary

conditions, Leveque [23,24] discusses a general method to obtain boundary conditions

on the split parts.
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The fractional step method is first order accurate in time and is usually stable if

the numerical method of each part is stable [20]. It is a versatile method that, in

addition to having useful modularity properties, allows using appropriate methods to

solve different parts of the PDE efficiently. For example, consider a one-dimensional

advection-diffusion equation. Solving both parts together using the CN method pro-

duces oscillatory solutions and is inefficient since it requires solving a linear system

at each time step. Moreover, solving this linear system cannot be optimized if the

advection coefficient depends on time. On the other hand, solving both parts using

the Lax-Wendroff-Leveque method places severe restrictions on the time step size

(∆t = O(∆x2)) [20]. However, using fractional time stepping, the advection part

can be solved efficiently using the explicit Lax-Wendroff-Leveque method and the

diffusion part might be solved using the implicit CN method. The output of the two

methods can be combined to produce a numerical approximation to the solution of

the original problem. In fact, when solving individual parts, we might take more

intermediate time steps to satisfy stability requirements. The accuracy will, however,

still be determined by the splitting time step size.

Given d(x), consider another example

∂tq +∇x · (dq) = 0, (III.23)

with given boundary conditions. Here x is a d−dimensional variable. Dimensional

splitting can be used to efficiently calculate an approximate solution of this diffusion

equation. This is done, for example, by solving a series of one-dimensional equations

of the form

∂tq + ∂xi
(dq) = 0, (III.24)

with appropriate boundary conditions, for each i = 1 · · · d. In other words, this
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equation is solved in each dimension by fixing all other dimensions. The solution of

each equation is used as the initial condition of the next and we obtain, at the end,

an approximate solution of (III.23).

III.1.2 Numerical Schemes for Solving SDEs

Given a time discretization 0 = t0 < t1 < · · · < tK = T and denoting ∆tk =

tk+1 − tk and ∆t = maxk ∆tk and finally ∆Wk = W (tk+1) − W (tk), we simulate

an approximation of a single realization of the stochastic process X(tk) ≈ Xk that

satisfies the SDE (II.8) by using the following forward Euler discretization

Xk+1 = Xk + a(Xk, tk)∆tk + b(Xk, tk)∆Wk, for k = 0, · · · , K − 1 (III.25a)

X0 =
◦
X. (III.25b)

Note that ∆Wk is sampled from a normal distribution with zero mean and variance

∆tk (cf. Section II.1.1). Similar ideas apply to the SDE system (II.10). Assuming

sufficient regularity conditions on a and b, it is well known (cf. [15]) that XK converges

weakly to X(T ) with O(∆t) and strongly with O(∆t1/2). That is

|E {XK} − E {X(T )}| = O(∆t), (III.26)(
E
{
|XK −X(T )|2

})1/2
= O(∆t1/2). (III.27)

The forward Euler method is an explicit method that has certain stability re-

quirements. Specifically, assuming a decaying process, the advection term requires

∆tk < 2|δxa(tk, Xk)|−1. In some systems, the value |δxa| can be large, as is the case

in (II.28b) and (II.28c) due to the ϕ factor. In such cases, ∆tk might have to be

small for some k and an adaptive method might be more suitable. In other cases,

∆tk might have to be small for all k, in which case an explicit method is compu-
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tationally inefficient. However, the noise term cannot be easily handled implicitly

and using adaptive time stepping on the full Euler step (III.25) will complicate the

implementation due to the use of Brownian bridges [25] and a variable number of

random samples of ∆W . For these reasons we use a fractional step method similar to

the one discussed in Section III.1.1 in which the advection term is solved separately

from the diffusion term,

X̃k+1 = A(Xk,∆tk), (III.28a)

Xk+1 = X̃k+1 + b(X̃k+1, tk)∆Wk, (III.28b)

X0 =
◦
X, (III.28c)

where A(x, t) is any stable, consistent numerical method to solve the advection part

of (II.8) using x as initial condition and up to time t. For example, A can be an

explicit method with adaptive time stepping or an implicit method.

III.1.3 Monte Carlo Methods

Assume we want to approximate the expectation E {Y } for some random variable Y .

If we have an expression for the pdf of Y , ρ(y), then we can compute

E {Y } =

∫
Ω

yρ(y) dy, (III.29)

where Ω is the domain of Y . However, in some cases this integral is hard to evaluate,

or the explicit expression for ρ might be unknown, for example if Y is a complicated

function of a high dimensional random variable. In such cases, assuming we can still

sample Y , we can use the Monte Carlo (MC) estimator

ÊM{Y } =
1

M

M∑
m=1

Ym, (III.30)
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for some M , where {Ym}Mm=0 are independent samples of Y . Assuming the variance

of Y is finite, i.e. σ2 = Var {Y } <∞, the Central Limit Theorem states that

√
M
(

ÊM{Y } − E {Y }
)

L−−−−→
M→∞

N (0, σ2), (III.31)

Therefore, if we fix a finite M , large enough such that the MC estimator is “close”

to a normal random variable, we can with probability 1− θ bound the error in terms

of M

P

{
|E {Y } − ÊM{Y }| ≤

Φ−1(θ)σ√
M

}
≥ 1− θ. (III.32)

Here P {·} denotes a probability and Φ is the cumulative density function (cdf) of the

standard normal distribution. Moreover, the Berry-Esseen theorem [16] determines

the speed of the weak convergence in (III.31)

|FM(y)− Φ(y)| ≤ CBE
E {|Y − E {Y } |3}√
M(1 + |y|)3σ3

, (III.33)

for a fixed constant CBE. Here, FM(y) is the cdf of ÊM{Y }. Observe that the bound in

(III.32) depends on the unknown parameter σ, the standard deviation of the random

variable Y . However, this parameter can be approximated using the sample standard

deviation. Therefore, we start with some number of samples M and then estimate σ

and test if the error bound in (III.32) is below a certain tolerance, if not we compute

the optimal number of samples and repeat the process. This method can be unstable

due to errors in the approximation of the standard deviation. To increase stability,

one can limit the increase of the number of samples. For example, a maximum of

double the current number of samples can be imposed.

One advantage of Monte Carlo methods is that they are “embarrassingly parallel”,

since the computation of each sample Ym is, and should be, completely independent

of other samples. Moreover, the cost of computing each of these samples is usually



42

comparable to others. Therefore, a Monte Carlo method can be parallelized easily

by computing equal batches of samples on different computational nodes and then

combining their results on a central node. One technical, yet very important, detail

is to ensure that the pseudo-random number generators in different computation

nodes are not correlated. Random seeds in different computation nodes run into that

risk. One way to resolve this issue is to use a parallel random number generator

like SPRNG [26]. Another way is to have a central node for generating samples of

random variable and send batches of random samples to computation nodes. The

latter method is efficient and easy to implement when the exact number of needed

random samples is fixed and can be computed beforehand, and the work for generating

the random samples is small compared to evaluation of Ym.

III.1.4 Multilevel Monte Carlo

Again, assume we want to calculate the expectation E {Y }, but this time in the

specific case where Y = ψ(X(T )) for some function ψ and final time T , where X(t)

is a random process described by an SDE. We can construct a similar estimator to

(III.30), however this assumes that we can sample the random variable X(T ). For

most SDE systems this is usually not the case and all we can do is approximate a

sample of X(T ) using for example forward Euler with uniform time step size ∆t as

discussed in Section III.1.2. We denote by Y∆t;m the m’th sample of Y calculated by

approximating X(T ) using a ∆t time step size. Therefore, we have two sources of

errors: discretization error from the forward Euler approximation with O(∆t) and a

statistical error from the Monte Carlo estimator with O(
√
M), as shown in (III.32).

That is, with certain probability we have

|E {Y } − 1

M

M∑
m=1

Y∆t;m| = O(∆t) +O(
√
M). (III.34)
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Thus, to achieve a certain accuracy ε we have to choose ∆t ∝ O(ε) and M ∝ O(ε−2)

and the total work would be then O(ε−3).

In the context of Itô SDEs, Giles [27] proposed the following multilevel Monte

Carlo (MLMC) estimator to reduce the cost above from O(ε−3) to O(ε−2(log(ε))2),

ÊML{Y } =
L∑
l=0

Zl, (III.35a)

with

Z0 =
1

M0

M0∑
m=1

Y∆t0;m, (III.35b)

Zl =
1

Ml

Ml∑
m=1

Y∆tl−1;m − Y∆tl;m, 0 < l ≤ L, (III.35c)

where in Zl both Y∆tl−1;m and Y∆tl;m use the same sample of initial conditions and

noise path W (t). Moreover, the noise used in computing Zl is independent of the

noise used in computing {Zk}Lk=0,k 6=l. The basic idea behind MLMC is to reduce

the variance of the Monte Carlo estimators to subsequently reduce the number of

needed samples to bound the statistical error, while still keeping the discretization

error under control. This is achieved by using deeper levels with finer discretization

and few samples to reduce the discretization error and using other levels with coarse

discretization and more samples to reduce the variance. Giles also proposed the choice

∆tl = O(M−1
l ) and discussed a method for choosing Ml and the number of levels L

to achieve a desired accuracy ε with high probability.

III.2 Implementation

In this section we discuss how we use the computational methods reviewed in Section

III.1 to obtain numerical approximations to the solutions of the models discussed in

Section II.2.
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III.2.1 Particle-Based Simulation

We begin by calculating approximate solutions to the modified particle-based model

discussed in II.2.2.

Simulating a single realization

For simulating a single realization of (II.28) with a uniform time step size ∆t, we use

the fractional step method (cf. (III.28))

xk+1
α = xkα + vkα∆t, (III.36a)

ṽk+1
α = FE(Xk+1,Vk,xk+1

α ,vkα,∆t), (III.36b)

vk+1
α = ṽk+1

α + ς(ṽk+1
α )∆Wk

α, (III.36c)

for α = 1 · · ·P . Here Xk = {xkα}Pα=1 and Vk = {vkα}Pα=1. Moreover, FE(X,V,x,v,∆t̂)

is an adaptive forward Euler method that numerically solves the advection part of

(II.28b) for a single time step of size ∆t̂ starting with the initial value v, such that

the solution remains “stable”; possibly by using many intermediate time steps. Usu-

ally, adaptivity is used to achieve certain accuracy by measuring the error using a

method such as Richardson extrapolation [20]. In this case we decrease the size of

the time step if the solution is unstable. A good measure of stability of this system

is if the velocity magnitude does not increase above smax. That is, either the velocity

magnitude decreases or stays bounded by smax. This, as we know from Section II.2.2,

is a qualitative property of the exact solution to (II.28) due to the multiplication by

the cut-off factor ϕ. In summary, the adaptive algorithm of FE(X,V,x,v,∆t̂) is

1. Set ∆t0 = ∆t̂, t = 0, k = 0 and ṽ0 = v.

2. Calculate z = ṽk + ϑ(X,V,x, ṽk)∆tk

3. If ‖z‖ ≤ max(‖ṽk‖, smax) then set ṽk+1 = z, t = t+ ∆tk and ∆tk+1 = ∆t̂− t.
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4. Else set ∆tk+1 = ∆tk/2 and go to 2.

5. If ∆tk+1 = 0 then return ṽk+1.

6. Otherwise set k = k + 1 and go to 2.

To prevent the algorithm from looping infinitely, we abort it when ∆tk <
√
εM where

εM is machine epsilon. In such a case, we revert to a projected Euler (cf. [18]) method

where we return the maximum velocity in the direction ϑ(X,V,x, ṽk).

Computing Quantities of Interest

The main goal here is to calculate a vector of certain quantities of interest or observ-

ables that depend on the states of all P particles, such as the average position or

average velocity. To this end, we use the multilevel Monte Carlo method with a cer-

tain specified tolerance to control the statistical and discretization errors as discussed

in Section III.1.4 and [27]. We also use a parallel implementation of MLMC in which

Monte Carlo samples are simulated on different computational nodes.

III.2.2 Numerical Solution of the Continuous Model

Next, we look at the numerical solution of the PDE (II.35). In CaseI , this is a

two-dimensional PDE in space. In CaseII , the PDE is four-dimensional in space.

General desirable properties for the numerical methods include positivity and mass-

conservation. First, the numerical methods discussed in Section III.1.1 approximate

solutions to PDEs over bounded domains. As such we must truncate the unbounded

position domain of the PDE (II.35). Specifically we solve (II.35) over x ∈ [0, xmax]d

and v ∈ [−smax, smax]d where d = 1, 2 for the CaseI and CaseII , respectively. When

dealing with bounded domains we have to introduce conditions at the domain bound-

aries, in this case these conditions are called artificial boundary conditions since they

are imposed to solve the PDE numerically and are not part of the original PDE. These
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artificial boundary conditions have to be consistent with the solution to the PDE with

the unbounded domain when the initial conditions are bounded. In CaseI we impose

periodic boundary conditions in the x−dimension. Moreover, in CaseII (see Figure

II.1), we impose zero inflow on the top, left and bottom boundaries. These boundaries

will not have an outflow since the walls will push the density away from boundaries.

On the other hand, we do not impose any boundary conditions on the right boundary

since this is an outflow boundary. We emphasize that the obstacles inside the domain

are not considered “boundaries” in the sense of the numerical scheme, since they are

part of the solution domain and hence the solution is approximated inside them. As

such no conditions are imposed near the obstacles.

Dimensional splitting is used to update the position and velocity parts separately.

Moreover, we use the fractional step method to solve the v−advection and v−diffusion

separately. This is an efficient method in this case, since diffusion and advection have

very different stability requirements, and time-splitting will allow us to use different

methods well suited for these different operations.

In summary, in CaseI we solve the following PDEs that are each one-dimensional

in space

∂tρ1 + v · ∇xρ1 = 0, (III.37a)

ρ1(t, 0, ·) = ρ1(t, xmax, ·),

∂tρ2 +∇v · (ϑρ2) = 0, (III.37b)

ρ2(t, ·,−smax) = 0, or ρ2(t, ·, smax) = 0,

∂tρ3 −
1

2
∇2
v

(
ς2ρ3

)
= 0, (III.37c)

∂vρ3(t, ·,−smax) = ∂vρ3(t, ·,+smax) = 0,
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In CaseII we solve the following PDEs that are each two-dimensional in space

∂tρ1 + v · ∇xρ1 = 0, (III.38a)

ρ1(t, [0, ·], ·) = ρ1(t, [·, 0], ·) = ρ1(t, [·, xmax], ·) = 0,

∂tρ2 +∇v · (ϑρ2) = 0, (III.38b)

ρ2(t, ·, [−smax, ·]) = 0, or ρ2(t, ·, [+smax, ·]) = 0,

or ρ2(t, ·, [·,−smax]) = 0, or ρ2(t, ·, [·,+smax]) = 0,

∂tρ3 −
1

2
∇2

v

(
ς2ρ3

)
= 0, (III.38c)

ρ2(t, ·, [−smax, ·]) = ρ2(t, ·, [+smax, ·]) = 0,

ρ2(t, ·, [·,−smax]) = ρ2(t, ·, [·,+smax]) = 0.

In both (III.37) and (III.38), the PDEs are solved in succession from tk to tk+1 and

using the following initial conditions

ρ1(tk, ·, ·) = ρ̂(tk, ·, ·), (III.39a)

ρ2(tk, ·, ·) = ρ1(tk+1, ·, ·), (III.39b)

ρ3(tk, ·, ·) = ρ2(tk+1, ·, ·), (III.39c)

ρ̂(tk+1, ·, ·) = ρ3(tk+1, ·, ·), (III.39d)

where ρ̂ is the approximate solution of (II.35). The order of solving these parts is

arbitrary and the same accuracy can be achieved by using a different ordering.

The selection of boundary conditions on ρ2 in both (III.37b) and (III.38b) depend

on the value of the flux at the boundaries. Specifically, these conditions are imposed

only if the flux at the boundaries is inward. Observe that the same previously dis-

cussed artificial boundary conditions in x−dimension are imposed unchanged on ρ1

in (III.37a) and (III.38a). On the other hand, in general, because of the nonlinear
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and nonlocal dependence on ρ, deriving boundary conditions on ρ2 and ρ3 that are

equivalent to the zero-flux boundary condition on ρ in the v−dimension is a hard

problem [23,24]. However, this problem is simpler in our case since the advection and

diffusion terms are multiplied by the cut-off function ϕ which equals zero at the out-

flow boundaries. In (III.37c) and (III.38c) the PDE trivially become ∂tρ3 = 0 at the

boundaries of the v−dimension, therefore boundary conditions are in fact unnecessary

for the well-posedness of the system. Similarly, at the outflow boundaries, (III.37b)

and (III.38b) also trivially become ∂tρ2 = 0, and therefore boundary conditions are

not needed here either. At inflow boundaries, imposing zero influx is compatible with

the suggested zero-flux boundary conditions in the v−dimension.

We adopt the discretization discussed in Section III.1.1 with the same notation.

For each v on the grid, (III.37a) and (III.38a) are transport equations with constant

coefficients. To obtain a numerical approximation of their solutions we use the Lax-

Wendroff-Leveque scheme described in [19] and implemented in Clawpack and its

python front-end, pyclaw [22]. Moreover, for each x on the grid, we approximate the

solutions of (III.37c) and (III.38c) by using the Crank-Nicholson method with zero

flux boundary conditions as discussed in Section III.1.1. To numerically solve (III.37b)

and (III.38b) we first linearize these equations by evaluating ϑ using ρ2(tk, ·, ·). With

this approximation, for every x on the grid, (III.37b) and (III.38b) are advection

equations with variable coefficients which can be solved numerically using the explicit

Lax-Wendroff-Leveque method. However, for this explicit method, high advection

speeds might place severe restrictions on the time step size, as discussed in Section

III.1.1. For this reason we use the uBE implicit method to numerically solve this

PDE when the advection speeds are big enough such that the Lax-Wendroff-Leveque

method is inefficient. In fact, since we have to solve (III.37b) and (III.38b) for every

position x in the grid, we can select one of the two methods (Lax-Wendroff-Leveque

or uBE) based on the maximum magnitude of ϑ for each x.
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We note that other higher order methods also exist to efficiently solve (III.37b)

and (III.38b) with high advection speed, such as Crank-Nicolson, iWENO [28], and

Lagrangian schemes [29]. Compared to uBE, Crank-Nicoloson is highly oscillatory

when the advection speed is high. These oscillations produce negative spikes in the

probability density; which must be non-negative by definition. Similarly we tried

the iWENO, or implicit WENO, method which is supposed to be stable for larger

time step sizes, compared to the explicit WENO method. However, the method is

again oscillatory unless the time step satisfies the stability requirements of the explicit

WENO method. On the other hand, Lagrangian schemes are based on numerically

solving the characteristic equations and interpolating the initial condition to approx-

imate the solution at later time. These schemes seem the most promising in our case.

However, they are only conservative if the used interpolation method is conservative.

Constructing a conservative interpolation scheme that does not degrade the order of

the method is not trivial, so we decided to leave it for future work. We refer to [29,30],

where a conservative interpolation scheme is proposed, using the solution of separate

PDEs for the spatial first-order derivatives of ρ.

One last detail is the evaluation of the advection speed ϑ which requires the

evaluation of a double integral (refer to (II.35)). The inner integral in the velocity

domain can be calculated once per time step and then used for all x on the grid. On

the other hand the second integral of the convolution must be re-evaluated for every x

on the grid. If naively implemented, this would introduce quadratic cost with respect

to the number of cells in the x−dimensions. We reduce this cost by using the Fast

Fourier Transform (FFT) to evaluate the convolution efficiently for all x−points on

the grid. Observe that implementing FFT with non-uniform or non-rectangular mesh

is nontrivial. This is the main reason for the choice of uniform rectangular grids in

the discretization of the domain of the x−dimensions.



Chapter IV

Numerical Results

This chapter presents numerical results obtained by approximating solutions to the

modified particle-based model (II.28) and the continuous mean-field model (II.35) in

both CaseI and CaseII . Recall that in CaseI pedestrians move clockwise on a circle

with no obstacles. CaseII , on the other hand, models pedestrians exiting a room with

obstacles. We start by describing the methods we use to test convergence of different

models, the computed observables and the used parameters in Section IV.1. Section

IV.2 presents results obtained using the modified particle-based model, Section IV.3

presents results obtained using the continuous model and Section IV.4 compares the

results from the two models. Finally, IV.5 discusses the computational difficulties

with CaseII .

IV.1 Observables and Parameters

To test convergence we compare a vector of observables computed using the different

models or different discretizations of the same model. In CaseI these observables are

50
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KDE-like (Kernel Density Estimation), in the sense that they are of the form

gx(x̃i) =
1

hx

∫
Υ1

(
ν(x̃i, x)− 2r

hx

)
ρx(x) dx, (IV.1a)

gv(ṽi) =
1

hv

∫
Υ1

(
ṽi − v
hv

)
ρv(v) dv, (IV.1b)

for some {x̃i}Ii=1 and {ṽi}Ii=1 and positive constants hx and hv. Here, ρx and ρv are

the marginal probability density functions of position and velocity at final time T ,

respectively. Also, ν is defined in (II.33a). The kernel Υ1 is simply a Gaussian

Υ1(x) =
1√
2π

exp(−x2/2). (IV.2)

The vector of observables in CaseI is then

g = (gx(x̃0), · · · , gx(x̃I), gv(ṽ0), · · · , gv(ṽI)) , (IV.3)

Similarly, in CaseII the observables are of the form

gx(x̃i, ỹj) =
1

hxhy

∫ ∫
Υ2

(
x̃i − x
hx

,
ỹj − y
hy

)
ρJ,x([x, y]) dx dy, (IV.4)

gv(ṽi, w̃j) =
1

hvhw

∫ ∫
Υ2

(
ṽi − v
hv

,
w̃j − w
hw

)
ρJ,v([v, w]) dv dw, (IV.5)

for some {x̃i}Ii=1, {ỹi}Ii=1, {ṽi}Ii=1 and {w̃i}Ii=1 and positive constants hx, hy, hv and hw.

The kernel Υ2 is again a Gaussian

Υ2(x, y) =
1

2π
exp(−(x2 + y2)/2). (IV.6)
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Moreover

ρJ,x(x̄) =
J(x̄)

∫
Dv
ρ(T,v, x̄) dv∫

Rd J(x)
∫
Dv
ρ(T,v,x) dv dx

, (IV.7)

ρJ,v(v̄) =

∫
Dx
J(x)ρ(T, v̄,x) dx∫

Rd J(x)
∫
Dv
ρ(T,v,x) dv dx

. (IV.8)

The vector of observables in CaseII is then

g =
(
gx(x̃0, ỹ0), · · · , gx(x̃0, ỹI), gx(x̃1, ỹ0), · · · , gx(x̃i, ỹj), · · · , gx(x̃I , ỹI), (IV.9)

gv(ṽ0, w̃0), · · · , gv(ṽ0, w̃I), gv(ṽ1, w̃0), · · · , gv(ṽi, w̃j), · · · , gv(ṽI , w̃I),
)
.

Given a reference vector of observables gref and an approximated one ĝ, errors are

computed as

Relative Error =
‖ĝ − gref‖∞
‖gref‖∞

. (IV.10)

Refer to Table IV.1 for the chosen parameters used in the simulations and com-

putation of observables. Table IV.2 lists values of some observables in some cases for

reference. Finally note that we only present convergence plots at a specific final time.

However, similar plots were generated at different intermediate times showing similar

results.

IV.2 Particle-Based Model

Figures IV.1 and IV.2 show sample realizations of the particle-based simulation in

CaseI and CaseII using the parameters in Table IV.1. The marginal densities of

pedestrians in the position and velocity plane were approximated using a KDE-like

method and are shown in the same Figure. Note that this is different from the

traditional KDE method since the samples of the particles’ positions and velocities
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Parameter Name CaseI CaseII
A for pedestrian-pedestrian interaction 10 40
A for pedestrian-obstacle interaction - 2
B for pair interaction 0.016 0.0032
r Pedestrian radius 0.016 0.016
T 1.5 2.5
σ 0.0707 0.0707
xmax 1 1
ymax - 1
smax 1 1
v0 0.25 0.3
τ 1 1
ζ 10−3 10−3

{x̃i}10
i=1 for KDE-like observables (i− 1)/10 + 0.05 (i− 1)/10 + 0.05

{ỹi}10
i=1 for KDE-like observables - (i− 1)/10 + 0.05

{ṽi}10
i=1 for KDE-like observables 2(i− 1)/10− 0.95 2(i− 1)/10− 0.95

{w̃i}10
i=1 for KDE-like observables - 2(i− 1)/10− 0.95

hx, hy 1/60 1/60
hv, hw 2/60 2/60

Table IV.1: Parameters used in the simulations for CaseI and CaseII . The parameters
in CaseII are similar to those chosen by Helbing in his code.

are not independent as required by the traditional KDE algorithm [31].

The observables were approximated using a fixed number of pedestrians P using

an approach like Monte Carlo. That is, in CaseI

gPx (x̃i) =
1

hxP

P∑
α=1

Υ1

(
ν(x̃i, xα)− 2r

hx

)
, (IV.11a)

gPv (ṽi) =
1

hvP

P∑
α=1

Υ1

(
ṽi − vα
hv

)
, (IV.11b)

where xα and vα are the position and velocity of pedestrian α, respectively. Similarly

in CaseII

gPx (x̃i, ỹj) =
1

hxhyPJ

PJ∑
α=1

Υ2

(
x̃i − xα
hx

,
ỹj − yα
hy

)
, (IV.12a)

gPv (ṽi, w̃j) =
1

hvhwPJ

PJ∑
α=1

Υ2

(
ṽi − vα
hv

,
w̃j − wα
hw

)
, (IV.12b)



54

Observable Particle-based
system, P = 160,
relative tolerance

= 0.5%

Continuous mean-field
limit, Nx = 800, Nv = 400,

K = 1500, relative
tolerance = 0.5%

gx(x̃3) 1.05 1.04
gx(x̃4) 1.25 1.25
gx(x̃5) 1.35 1.35
gx(x̃6) 1.37 1.37
gx(x̃7) 1.29 1.29
gv(ṽ3) 0 0
gv(ṽ4) 0 0
gv(ṽ5) 0.30 0.31
gv(ṽ6) 1.72 1.69
gv(ṽ7) 2.07 2.08

(a) CaseI at T = 1.5.

Observable Particle-based
system, P = 160,
relative tolerance

= 10%

Continuous mean-field
limit, Nx = 40, Nv = 40,
K = 800, relative tolerance

= 100%
gx(x̃3, ỹ4) 4.9 4
gx(x̃4, ỹ4) 7.3 4
gx(x̃4, ỹ3) 6.0 4
gx(x̃6, ỹ3) 6.0 4
gx(x̃7, ỹ3) 4.5 4
gv(ṽ6, w̃6) 7.1 8
gv(ṽ6, w̃5) 2.5 2
gv(ṽ7, w̃6) 9.2 7
gv(ṽ7, w̃5) 3.2 2
gv(ṽ7, w̃7) 0.5 2

(b) CaseII at T = 2.5.

Table IV.2: Values of some observables at final time.
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where xα = [xα, yα] and vα = [vα, wα] are the position and velocity of pedestrian

α, respectively. Again, this is different from a traditional Monte Carlo method since

{xα}Pα=0 and {vα}Pα=0 are not independent.

Figure IV.3 plots the relative error of the chosen vector of observables for different

number of pedestrians P . The errors in this Figure were calculated by comparing each

computed vector of observables to a reference vector of observables computed using

a larger number of pedestrians P , indicated in the Figure’s caption. We call this

error the modelling error. In CaseI the relative error tolerance used to calculate the

vector of observables is ε = 0.5%. In CaseII the relative error tolerance is ε = 10%.

These figures suggest that the particle-based model reaches a limit as the number of

pedestrians increases. Moreover, it seems that the observables converge as O(P−1)

in CaseI and as O(P−0.5) in CaseII ; where P is the number of particles.

IV.3 Continuous Model

Next we look at the numerical results obtained by approximating solutions to the

continuous model (II.35) using the parameters in Table IV.1. Figures IV.4 and IV.5

show the L1 convergence of approximate solutions to a reference solution with respect

to discretization in position and velocity planes and time discretization, in CaseI and

CaseII . In these figures, K refers to the number of time steps. Moreover, Nx + 1

refers to the number of discretization points in each dimension in the position plane.

In other words, the number of cells in CaseI would be Nx and in CaseII the number

of cells would be N2
x . Similarly, Nv + 1 refers to the number of discretization points

in each dimension in the velocity plane. In each of these convergence plots, multiple

approximations of the solution are compared to a reference approximation. Moreover,

in each figure, the different approximations differ in only one of the discretization

parameters (Nx, Nv and K) while keeping the others fixed. Similarly, the reference
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Figure IV.1: Sample realizations for CaseI at two different times. The KDE of the
marginal densities are superimposed on the positions and velocities of pedestrians.
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Figure IV.2: Sample realizations for CaseII at two different times. The KDE of the
marginal densities are superimposed on the positions and velocities of pedestrians.
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Figure IV.3: Convergence of observables computed using the particle-based model as
the number of pedestrians increases. Blue dashed line is the relative error tolerance
of the reference solution.
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approximation has the same fixed discretization parameters and a fine discretization

in the variable one. For example, in Figure IV.4a, Nx and Nv are the same for

each approximation including the reference approximation and K is different for each

approximation, here K = 64000 for the reference approximation. Finally, the error is

the L1 difference between each approximation and the reference solution.

In both CaseI and CaseII , we observe seemingly first order convergence with

respect to the number of time steps. This is expected since the fractional time-

stepping approach that we use is only first order accurate. We also observe at least

first order convergence with respect to the number of cells in velocity plane. Similar

convergence is observed in CaseI with respect to the number of cells in the position

plane. The reason we do not see the expected second order convergence of the Lax-

Wendroff-Leveque method is that we use the first order uBE method for some position

slices depending on the advection speed. On the other hand, Figure IV.5b does

not suggest convergence of the approximated solution with respect to the number

of cells in the position plane in CaseII . We believe that this is because the PDE is

under-resolved with such a coarse discretization of the position plane and convergence

would be observed if finer discretization is used. However, due to the computational

difficulties discussed in IV.5, we were not able to refine the discretization any further.

Figures IV.6 and IV.7 show the convergence of the previously described vector

of observables when computed using approximate solutions to the continuous model.

The error is the relative error between these vectors of observables to a reference

vector of observables computed using a reference solution. Here, we observe similar

convergence results to those previously observed in Figures IV.4 and IV.5. Moreover,

we observe what seems to be more than first order convergence even with respect to

the number of cells in the position plane in CaseII .

Finally, for CaseI we compute a reference solution with a tolerance of 0.5% to

bound the relative error of the vector of observables by using Richardson extrapolation
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to estimate the discretization error. We use this solution in the next section to

compare the two models; continuous mean-field model and the particles-based model.

For CaseII , obtaining such an approximation of the solution with small relative error

tolerance proved to be difficult due to the computational complexity of the used

numerical methods and the high dimensionality of the integral PDE, which in this case

is four-dimensional and time-dependent. For this reason, the approximated solution

that was obtained had an relative error tolerance of 100%.

IV.4 Comparison

Finally we look at the convergence of the vector of observables that were calculated

using the particle-based model to those calculated using the reference numerical solu-

tion of the continuous model. Figure IV.8 shows that this vector of observables seem

to converge as P−1 in CaseI and as P−0.5 in CaseII .

IV.5 Computational Challenges in CaseII

It can be argued that the observed errors in CaseII that are shown in Figures IV.7b

and IV.8b are too large to make statements about convergence. Moreover, Figure

IV.5b does not even suggest L1 convergence of the approximated solution. However,

even with large errors these figures show a possibility of convergence of the particle-

based model to a mean-field model. These numerical observations justify further

computations to show convergence with smaller errors and further investigation to

rigorously prove such a convergence.

To generate figures similar to Figures IV.7b, IV.8b and IV.5b with smaller er-

rors, finer discretization must be used to approximate the solution to the continuous

model of the mean-field limit of CaseII . Recall that this continuous model is an inte-

gral, four-dimensional, time dependent PDE. The numerical methods discussed and
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implemented in this work are non-adaptive and use uniform discretizations in all di-

mensions. Moreover, these methods are observed to be first-order as shown in IV.8b.

As such the cost of these methods grow rapidly with finer discretization to the point

where they become computationally infeasible. Better and higher order methods that

use the regularity and locality of the solution (as seen in Figure IV.2) can be used to

efficiently compute approximate solutions to the continuous model. To this end, we

suggest using adaptive Finite Element methods and Sparse Grid methods.
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Figure IV.4: L1 convergence of approximate solution to continuous model in CaseI .
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Figure IV.6: Convergence of vector of observables computed using the approximate solutions of the continuous model in CaseI .
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Chapter V

Particle Multilevel Monte Carlo

In this chapter we discuss a possible extension to MLMC that utilizes the strong

convergence of the particle-based system to compute an observable in the mean-

field. Note that this is the complete opposite of the objective discussed previously;

namely, approximating observables of particle-based systems using the mean-field.

Nonetheless, we list this application to illustrate the concept of Particle Multilevel

Monte Carlo. This can also be an important method in case solving for the pdf of

the mean-field limit is expensive or difficult, for example if the state in the nonlinear

Fokker-Plank equation of the pdf is high dimensional.

Assume we are interested in computing E {Y } where

Y = ψ
(
X(T ),V(T )

)
, (V.1)

for some Lipschitz function ψ. Here X and V satisfy (II.17). One way to compute

such a quantity would be to use a Monte Carlo estimator. However, this assumes

that we can sample X and V, which is generally not the case since the marginal

mean-field pdf ρ in (II.17) is generally unknown, unless we solve the corresponding

Fokker-Planck equation (II.18). Nevertheless, we can sample an approximation of

X(T ) and V(T ) by using P particles in the particle system and K time steps in the

65



66

Forward Euler method. Denote by YP,K;m the m’th sample of such an approximation,

then the Monte Carlo estimator is

ÊMC{Y } =
M∑
m=1

YP,K;m (V.2)

We know from previous discussions in Chapters II and IV and [27] that the mean

square error (MSE) is of the form

MSE = E
{
|E {Y } − ÊMC{Y }|2

}
= O(P−2w)︸ ︷︷ ︸

Modelling error

+ O(M−1)︸ ︷︷ ︸
Statistical error

+ O(K−2)︸ ︷︷ ︸
Time discretization error

,

(V.3)

where w is the order of weak convergence of the particle-system to the mean-field limit

as the number of pedestrians increases. For example, w = 1 for CaseI pedestrian flow

model, and w = 0.5 for CaseII pedestrian flow model, both discussed in Chapter II.

The total work to compute the estimator ÊMC{Y } is O(MKP r). For example, in the

particle-based models discussed in this work r = 2. The cost is quadratic with respect

to the number of particles due to the brute force calculation of the psychological force

at each time step (cf. (II.28)). Hence, to bound the MSE by ε2 the total needed

work is O(ε−3−r/w). Giles [27] proposed multilevel Monte Carlo in the context of

SDEs to reduce the computational work required to bound the statistical and time

discretization error from O(ε−3) to O
(
ε−2 log2(ε)

)
. Using this method with a fixed

number of particles reduces the total work to O
(
ε−2−r/w log2(ε)

)
.
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Inspired by Giles’ work, we propose the following estimator

ÊML{Y } =
L∑
l=0

Zl, (V.4a)

Z0 =
1

M0

M0∑
m=1

YP0,K0;m , (V.4b)

Zl =
1

Ml

Ml∑
m=1

(
YPl,Kl;m − YPl−1,Kl−1;m

)
, 1 ≤ l ≤ L. (V.4c)

The key idea here is that when computing Zl both terms YPl,Kl;m and YPl−1,Kl−1;m

use the same driving noise to reduce the total variance of the estimator ÊML{Y }.

Moreover, the samples of {Zl}Ll=0 are assumed to be independent. For example, if

Pl = 2Pl−1 this can be done by sampling the initial condition of the Pl particles

and the noise path W (t) for each of these particle. With this, the sample YPl,Kl;m is

computed. Then the Pl particles are split into two equal groups and YPl−1,Kl−1;m is

computed for each of these groups where each particle uses the same initial condition

and the same noise path W (t). Finally the two values from the two groups are

averaged.

To find the optimal number of samples Ml for each level, we minimize the work

while constraining the variance to be ε2/2, that is

 minMl

∑L
l=0MlKlP

r
l

subject to
∑L

l=0M
−1
l Vl ≤ ε2

2

, (V.5)

where Vl = Var {Zl}. This optimization problem can be easily solved using Lagrange

multipliers to find the optimal Ml, that is

Ml = 2ε−2

√
Vl

KlP r
l

(
L∑
l=0

√
P r
l VlKl

)
, 0 ≤ l ≤ L. (V.6)

Also, for the value of L, observe that if the statistical error of Zl for l ≥ 1 is not
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dominant then |Zl| is an approximation of the weak error of |E {Y }−E
{
YPl−1,Kl−1

}
|,

where YPl−1,Kl−1
is the approximation of Y using Pl−1 particles and Kl−1 time steps.

Based on this, we increase the number of levels L if |ZL| is below a certain tolerance,

provided that the statistical error of ZL is below the same tolerance. Recall from

Section III.1.3 that the Central Limit Theorem provides an estimate of the statistical

error based on the standard deviation of ZL.

Next to calculate the total work, we assume that the variance of the differences

satisfies Vl = O(K−1
l +P−sl ) for some s > 0. We make the choice optimal Kl = O(P s

l ).

Then substituting Vl = O(K−1
l ) and (V.6) in (V.5), we can compute the order of the

total work

Total Work =
L∑
l=0

MlKlP
r
l (V.7a)

= 2ε−2

(
L∑
l=0

√
P r
l VlKl

)
L∑
l=0

(√
Vl

KlP r
l

)
KlP

r
l (V.7b)

= O

2ε−2

(
L∑
l=0

P
r/2
l

)2
 . (V.7c)

Provided that the statistical error of ZL is bounded by O(ε) we bound ZL by O(ε) to

get

O(P−wL ) +O(K−1
L ) = O(P−wL ) +O(P−sL ) = O(P−fL ) = O(ε). (V.8)

Here, we again used the assumption KL = O(P s
L) and denoted f = min (w, s). Also,

assuming that we choose Pl = O(2l) gives L = O(− log(ε)/f) and substituting in

(V.7) gives a total work of O(ε−2−r/f ). Comparing this to the previous total work es-

timate of Giles’ MLMC with fixed number of particles O
(
ε−2−r/w log2(ε)

)
we observe

that, for the choices we made, if w ≤ s then the total work of the proposed MLMC

method is O
(
ε−2−r/w). In other words, the log factor is eliminated.

Figure V.1 shows the results of running standard Giles’ MLMC with a fixed num-
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ber of particles (denoted mlmc1), Particle MLMC with fixed number of time steps

(denoted mlcm2) and finally the full MLMC with varying number of particles and

varying number of time steps (denoted mlmc3) on CaseI particle-based model of

pedestrian flow discussed in this work. In this system, w = 1 as observed numerically

in Chapter IV. Also r = 2 due to the brute force calculation of the psychological

force at each time step (cf. (II.28)). Moreover, the choice Kl = O(2l), Pl = O(2l)

was made in all MLMC variations. In Figure V.1a, we observe the expected first

order rates of weak convergence with respect to number time steps and number of

particles, Zl = O(K−1
l + P−1

l ). On the other hand, Figure V.1b suggests that s ≥ 1

in CaseI particle-based model of pedestrian flow. Figure V.1c shows how the num-

ber of samples decrease in deeper levels. This agrees with the main idea of MLMC

that was mentioned in Section III.1.4 where fewer samples with higher discretization

requirements are used to reduce the discretization errors while more samples with

less discretization requirements are used to reduce the statistical error. Moreover,

recalling that the work per sample is O(KP 2) and that K is fixed in mlmc1 and P

is fixed in mlmc2, Figure V.1d shows the expected computational time per sample in

each case. Finally, Figure V.1f shows the expected work order O(ε−4), which agrees

with our prediction.
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number of particles. Finally, mlmc3 denotes full MLMC with respect to both.



Chapter VI

Conclusions

In this work we proposed modifications to Helbing’s social force model for pedestrian

flow [1] and proposed a mean-field approximation for it as the number of pedestrians

increase. The existence of a mean-field limit of a specific SDE system was proved by

Bolley et al. [12] under some restrictive conditions. The system we consider here is

slightly different and does not satisfy all the required conditions. Yet we still con-

jecture a mean-field limit that we observe numerically. The evolution of mean-field

limit is described by a marginal probability density function for each pedestrian that

satisfies an integro-differential nonlinear Fokker-Planck equation. We discussed nu-

merical methods to approximate a vector of observables using both the particle-based

model and the continuous model and we presented numerical results that show the

convergence of the particle-based model to a certain limit as the number of pedestri-

ans increases. We also presented numerical results that indicate that such a limit is

the solution of the aforementioned nonlinear Fokker-Planck equation.

As future work, and as discussed in IV.5, we plan to implement sparse approxima-

tion methods (cf. [32]) to efficiently solve the Fokker-Planck equation, especially in

CaseII where it is a integral, four dimensional, time-dependent PDE. Other methods

can also be implemented to reduce the dimensionality of the problem, such as ap-
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proximating the solution by a Gaussian and solving for its time-dependent mean and

covariance matrix. Moreover, we plan to implement a multi-pole algorithm to use in

the particle-based simulations to compute the psychological force in linear complexity

with respect to the number of particles. Also, further parallelization of the particle-

based simulations can be implemented that possibly uses the computational power of

Graphical Processing Units (GPUs). Regarding Particle MLMC, we plan to look at

possible usage of antithetic estimators [15] that could improve the rate of strong con-

vergence and thus reduce the total work. Moreover, the current formulation assigns

the same tolerance to both the modelling and time discretization errors. We plan to

look at a different choice of tolerances that might increase the efficiency of the full

MLMC method.

Further theoretical work might include extending the work of Bolley et al. [12]

to prove the existence of a mean-field limit in more general settings that include the

system we consider here. Also, optimization problems can be solved to determine

the optimal environment parameters by using the deterministic solution of the con-

tinuous mean-field model instead of running expensive Monte Carlo simulations to

the particle-based model. Finally, the current model can be easily extended to model

other situations by changing the environment (including obstacles and exits) and

choosing different target forces (cf. (II.24)). Moreover, more state variables might

be added to the SDE system to track different objectives of the pedestrians. For

example, we intend to model pilgrims circling the Kabaa in Mecca a specific number

of times.
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