THE KAUST Repository is an initiative of the University Library to expand the impact of conference papers, technical reports, peer-reviewed articles, preprints, theses, images, data sets, and other research-related works of King Abdullah University of Science and Technology (KAUST). 

Files in the repository are accessible through popular web search engines and are given persistent web addresses so links will not become broken over time.

KAUST researchers: To submit your research to the repository, click on Submit an Item, log in with your KAUST user name and password, and deposit the item in the appropriate collection.

If you have any questions, please contact repository@kaust.edu.sa.

  • Light based underwater wireless communications

    Oubei, Hassan M.; Shen, Chao; Kammoun, Abla; Zedini, Emna; Park, Kihong; Sun, Xiaobin; Liu, Guangyu; Kang, Chun Hong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S. (IOP Science, 2018-07-17)
    Underwater wireless optical communication (UWOC) is a wireless communication technology that uses visible light to transmit data in underwater environment. Compared to radio-frequency (RF) and acoustic underwater techniques, UWOC has many advantages including large information bandwidth, unlicensed spectrum and low power requirements. This review paper provides an overview of the latest UWOC research. Additionally, we present a detailed description of transmitter and receiver technologies which are key components of UWOC systems. Moreover, studies investigating underwater optical channel models for both simple attenuation and the impact of turbulence including air bubbles and inhomogeneous salinity and temperature are also described. Future research challenges are identified and outlined.
  • Unleashing the potential of molecular beam epitaxy grown AlGaN-based ultraviolet-spectrum nanowires devices

    Min, Jungwook; Priante, Davide; Tangi, Malleswararao; Liu, Guangyu; Kang, Chun Hong; Prabaswara, Aditya; Zhao, Chao; Al-Maghrabi, Latifah; Alaskar, Yazeed; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S. (SPIE, 2018-07-12)
    There have been recent research advances in AlGaN-based self-assembled nanowires (NWs) as building blocks for ultraviolet (UV) optoelectronics grown by plasma-assisted molecular beam epitaxy. We review the basic growth kinetics on various foundry-compatible-metal/silicon-based substrates and the epistructure design for UV devices. We highlight the use of diffusion-barrier-metal thin film on silicon substrate as a solution to enhance device performance. NWs offer the opportunity to mitigate the detrimental quantum-confined Stark effect (QCSE), which lowers the recombination rate thereby reducing the device efficiency. On the other hand, the polarization-induced doping from the graded composition along NWs can be advantageous for eluding the inefficient doping in AlGaN-based UV devices. Sidewall surface states and the associate passivation treatment, as well as the use of ultrafast electron-microscopy characterization, are crucial investigations in shedding light on device performance under the influence of surface dangling bonds. For investigating the electrical performance of individual NWs and NWs light-emitting diode as a single entity, recent reports based on conductive atomic force microscopy measurements provide fast-prototyping in-process pass-fail evaluation and a means of improving growth for high-performance devices. Stress tests of NWs devices, crucial for reliable operation, are also discussed. Beyond applications in LEDs, an AlGaN-based NWs solar-blind photodetector demonstrated leveraging on the dislocation-free active region, reduced QCSE, enhanced light absorption, and tunable-composition features. The review opens pathways and offers insights for practical realization of AlGaN-based axial NWs devices on scalable and low-cost silicon substrates.
  • Paving the Way for Efficient Content Delivery in Mobile Networks

    Lau, Chun Pong (2018-07-10)
    The flexibility of future mobile networks exploiting modern technologies such as cloud-optimized radio access and software-defined networks opens a gateway to deploying dynamic strategies for live and on-demand content delivery. Traditional live broadcasting systems are spectral inefficient. It takes up a lot more radio spectrum than that of mobile networks, to cover the same size of an area. Furthermore, content caching at base stations reduces network traffic in core networks. However, numerous duplicated copies of contents are still transmitted in the unicast fashion in radio access networks. It consumes valuable radio spectrum and unnecessary energy. Finally, due to the present of numerous mobile receivers with a wide diversity of wireless channels in a base station coverage area, it is a challenge to select a proper modulation scheme for video broadcasting to optimize the quality of services for users. In this thesis, the challenges and the problems in the current strategies for content delivery are addressed. A holistic novel solution is proposed that considers user preferences, user mobility, device-to-device communication, physical-layer resource allocation, and video quality prediction. First, a system-level scheduling framework is introduced to increase the spectral efficiency on broadcasting live contents onto mobile networks. It considers the audience preferences for allocating radio resources spatially and temporally. Second, to reduce the redundant transmissions in radio access networks, a content distribution system that exploits user mobility is proposed that utilizes the urban-scale user mobility and broadcasting nature of wireless communication for delay-tolerant large size content. Third, to further reduce the energy consumption in network infrastructure, a content distribution system that relies on both user mobility, and device-to-device communication is proposed. It leverages the mobile users as content carriers to offload the heavy mobile traffic from network-level onto device-level. Fourth, to mitigate the multi-user channel diversity problem, a cross-layer approach is deployed to increase the video quality for users especially for those who have a low signal-to-noise ratio signal. Finally, data mining techniques are employed to predict video qualities of wireless transmissions over mobile networks. The holistic solution has been empirically developed and evaluated. It achieves high spectral and energy efficiency and mitigates the video quality degradation in mobile networks.
  • Diode junction temperature in ultraviolet AlGaN quantum-disks-in-nanowires

    Priante, Davide; Elafandy, Rami T.; Prabaswara, Aditya; Janjua, Bilal; Zhao, Chao; Alias, Mohd Sharizal; Tangi, Malleswararao; Alaskar, Yazeed; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S. (AIP, 2018-07-05)
    The diode junction temperature (Tj) of light emitting devices is a key parameter affecting the efficiency, output power, and reliability. Herein, we present experimental measurements of the Tj on ultraviolet (UV) AlGaN nanowire (NW) light emitting diodes (LEDs), grown on a thin metal-film and silicon substrate using the diode forward voltage and electroluminescence peak-shift methods. The forward-voltage vs temperature curves show temperature coefficient dVF/dT values of −6.3 mV/°C and −5.2 mV/°C, respectively. The significantly smaller Tj of ∼61 °C is measured for the sample on the metal substrate, as compared to that of the sample on silicon (∼105 °C), at 50 mA, which results from the better electrical-to-optical energy conversion and the absence of the thermally insulating SiNx at the NWs/silicon interface. In contrast to the reported higher Tj values for AlGaN planar LEDs exhibiting low lateral and vertical heat dissipation, we obtained a relatively lower Tj at similar values of injection current. Lower temperatures are also achieved using an Infrared camera, confirming that the Tj reaches higher values than the overall device temperature. Furthermore, the heat source density is simulated and compared to experimental data. This work provides insight into addressing the high junction temperature limitations in light-emitters, by using a highly conductive thin metal substrate, and it aims to realize UV AlGaN NWs for high power and reliable emitting devices.
  • Experimental Investigation on The Influence of Liquid Fuels Composition on The Operational Characteristics of The Liquid Fueled Resonant Pulse Combustor

    Qatomah, Mohammad (2018-07)
    In this study, the response of a liquid-fueled resonant pulse combustor to changes in liquid fuel composition was investigated. Experiments were performed with gasoline- ethanol, gasoline-diesel, and gasoline-heptane mixtures selected to produce meaningful variations in the ignition delay time. A review of ignition quality tester (IQT) data provided an expected increase in the overall delay for gasoline-ethanol mixtures with increasing ethanol concentrations, and a decrease for gasoline-diesel mixtures with increasing diesel concentrations in the mixture. By taking the phase of the ion signal as an indicator of heat release timing, the experimental results showed an agreement of gasoline-ethanol cases with the IQT data with a near linear increase with increasing ethanol concentrations. However, for gasoline-diesel, there exit no linear relation with the IQT data. For the case of gasoline-heptane mixtures, the results showed a linear decrease in delay with increasing heptane concentrations. Furthermore, it was shown that small changes in the physical properties of the fuel can significantly in sequence the cold-start operation of the combustor and alter the coupling between the unsteady heat release and resonant acoustic pressure wave during resonant operation. Dynamic combustion chamber pressure, stagnation temperature and pressure are recorded after a fixed warm-up time to characterize the performance and operation of the device. Results are interpreted in the context of fuel sensitivity and performance optimization of a resonant pulse combustor for pressure gain turbine applications.

View more