Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport

Handle URI:
http://hdl.handle.net/10754/627442
Title:
Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport
Authors:
Burnett, Edmund K.; Ly, Jack; Niazi, Muhammad Rizwan ( 0000-0003-0449-1559 ) ; Zhang, Lei; McCuskey, Samantha R.; Amassian, Aram ( 0000-0002-5734-1194 ) ; Smilgies, Detlef-M.; Mannsfeld, Stefan C. B.; Briseno, Alejandro L.
Abstract:
Polymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a new
KAUST Department:
Physical Sciences and Engineering (PSE) Division; Materials Science and Engineering Program; KAUST Solar Center (KSC)
Citation:
Burnett EK, Ly J, Niazi MR, Zhang L, McCuskey SR, et al. (2018) Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport. Advanced Materials Interfaces: 1701607. Available: http://dx.doi.org/10.1002/admi.201701607.
Publisher:
Wiley-Blackwell
Journal:
Advanced Materials Interfaces
Issue Date:
26-Feb-2018
DOI:
10.1002/admi.201701607
Type:
Article
ISSN:
2196-7350
Sponsors:
E.K.B., J.L., and A.L.B. acknowledge the National Science Foundation (DMR-1508627) for support of this work. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation under Award No. DMR-1332208.
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/admi.201701607/full
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Materials Science and Engineering Program; KAUST Solar Center (KSC)

Full metadata record

DC FieldValue Language
dc.contributor.authorBurnett, Edmund K.en
dc.contributor.authorLy, Jacken
dc.contributor.authorNiazi, Muhammad Rizwanen
dc.contributor.authorZhang, Leien
dc.contributor.authorMcCuskey, Samantha R.en
dc.contributor.authorAmassian, Aramen
dc.contributor.authorSmilgies, Detlef-M.en
dc.contributor.authorMannsfeld, Stefan C. B.en
dc.contributor.authorBriseno, Alejandro L.en
dc.date.accessioned2018-04-15T07:13:34Z-
dc.date.available2018-04-15T07:13:34Z-
dc.date.issued2018-02-26en
dc.identifier.citationBurnett EK, Ly J, Niazi MR, Zhang L, McCuskey SR, et al. (2018) Bistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transport. Advanced Materials Interfaces: 1701607. Available: http://dx.doi.org/10.1002/admi.201701607.en
dc.identifier.issn2196-7350en
dc.identifier.doi10.1002/admi.201701607en
dc.identifier.urihttp://hdl.handle.net/10754/627442-
dc.description.abstractPolymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a newen
dc.description.sponsorshipE.K.B., J.L., and A.L.B. acknowledge the National Science Foundation (DMR-1508627) for support of this work. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation under Award No. DMR-1332208.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/admi.201701607/fullen
dc.subjectBistetraceneen
dc.subjectOrganic semiconductorsen
dc.subjectPolymorphismen
dc.subjectSolvent vapor annealingen
dc.titleBistetracene Thin Film Polymorphic Control to Unravel the Effect of Molecular Packing on Charge Transporten
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentMaterials Science and Engineering Programen
dc.contributor.departmentKAUST Solar Center (KSC)en
dc.identifier.journalAdvanced Materials Interfacesen
dc.contributor.institutionDepartment of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USAen
dc.contributor.institutionCornell High Energy Synchrotron Source; Cornell University; Ithaca NY 14853 USAen
dc.contributor.institutionCenter for Advanced Electronics Dresden; Dresden University of Technology; 01062 Dresden Germanyen
kaust.authorNiazi, Muhammad Rizwanen
kaust.authorAmassian, Aramen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.