Convergence of marine megafauna movement patterns in coastal and open oceans

Handle URI:
http://hdl.handle.net/10754/627221
Title:
Convergence of marine megafauna movement patterns in coastal and open oceans
Authors:
Sequeira, A. M. M.; Rodríguez, J. P. ( 0000-0001-6593-5032 ) ; Eguíluz, V. M. ( 0000-0003-1133-1289 ) ; Harcourt, R. ( 0000-0003-4666-2934 ) ; Hindell, M.; Sims, D. W.; Duarte, C. M.; Costa, D. P.; Fernández-Gracia, J.; Ferreira, L. C.; Hays, G. C.; Heupel, M. R.; Meekan, M. G.; Aven, A.; Bailleul, F.; Baylis, A. M. M.; Berumen, Michael L. ( 0000-0003-2463-2742 ) ; Braun, C. D.; Burns, J.; Caley, M. J.; Campbell, R.; Carmichael, R. H.; Clua, E. ( 0000-0001-7629-2685 ) ; Einoder, L. D.; Friedlaender, Ari; Goebel, M. E.; Goldsworthy, S. D.; Guinet, C.; Gunn, J.; Hamer, D.; Hammerschlag, N.; Hammill, M.; Hückstädt, L. A.; Humphries, N. E.; Lea, M.-A.; Lowther, A.; Mackay, A.; McHuron, E.; McKenzie, J.; McLeay, L.; McMahon, C. R.; Mengersen, K.; Muelbert, M. M. C. ( 0000-0002-5992-5994 ) ; Pagano, A. M.; Page, B.; Queiroz, N.; Robinson, P. W.; Shaffer, S. A.; Shivji, M.; Skomal, G. B.; Thorrold, S. R.; Villegas-Amtmann, S.; Weise, M.; Wells, R.; Wetherbee, B.; Wiebkin, A.; Wienecke, B.; Thums, M.
Abstract:
The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division; Marine Science Program; Red Sea Research Center (RSRC)
Citation:
Sequeira AMM, Rodríguez JP, Eguíluz VM, Harcourt R, Hindell M, et al. (2018) Convergence of marine megafauna movement patterns in coastal and open oceans. Proceedings of the National Academy of Sciences: 201716137. Available: http://dx.doi.org/10.1073/pnas.1716137115.
Publisher:
Proceedings of the National Academy of Sciences
Journal:
Proceedings of the National Academy of Sciences
Issue Date:
26-Feb-2018
DOI:
10.1073/pnas.1716137115
Type:
Article
ISSN:
0027-8424; 1091-6490
Sponsors:
We are thankful to I. Jonsen for initial discussions and all involved with the many aspects of fieldwork and data collection; details are included in SI Appendix, Acknowledgments. Workshop funding was granted by the University of Western Australia (UWA) Oceans Institute, the Australian Institute of Marine Science (AIMS), and King Abdullah University of Science and Technology (KAUST). A.M.M.S. was supported by Australian Research Council Grant DE170100841 and an Indian Ocean Ocean Marine Research Centre (UWA, AIMS, Commonwealth of Scientific and Industrial Research Organisation) fellowship. J.P.R., V.M.E., and J.F.G. were supported by Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER) through project Spatiotemporality in Sociobological Interactions, Models and Methods (SPASIMM) (FIS2016-80067-P AEI/FEDER, European Union), and by research funding from KAUST. J.P.R. was supported by Ministerio de Educación, Cultura y Deporte (Formación de Profesorado Universitario Grant, Spain). D.W.S. was supported by the UK Natural Environment Research Council and Save Our Seas Foundation. N.Q. was supported by Fundação para a Ciência e Tecnologia (Portugal). M.M.C.M. was supported by a Coordenação de Aperfeiçoamento de pessoal de Nível Superior fellowship (Ministry of Education).
Additional Links:
http://www.pnas.org/content/early/2018/02/16/1716137115
Appears in Collections:
Articles; Red Sea Research Center (RSRC); Marine Science Program; Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorSequeira, A. M. M.en
dc.contributor.authorRodríguez, J. P.en
dc.contributor.authorEguíluz, V. M.en
dc.contributor.authorHarcourt, R.en
dc.contributor.authorHindell, M.en
dc.contributor.authorSims, D. W.en
dc.contributor.authorDuarte, C. M.en
dc.contributor.authorCosta, D. P.en
dc.contributor.authorFernández-Gracia, J.en
dc.contributor.authorFerreira, L. C.en
dc.contributor.authorHays, G. C.en
dc.contributor.authorHeupel, M. R.en
dc.contributor.authorMeekan, M. G.en
dc.contributor.authorAven, A.en
dc.contributor.authorBailleul, F.en
dc.contributor.authorBaylis, A. M. M.en
dc.contributor.authorBerumen, Michael L.en
dc.contributor.authorBraun, C. D.en
dc.contributor.authorBurns, J.en
dc.contributor.authorCaley, M. J.en
dc.contributor.authorCampbell, R.en
dc.contributor.authorCarmichael, R. H.en
dc.contributor.authorClua, E.en
dc.contributor.authorEinoder, L. D.en
dc.contributor.authorFriedlaender, Arien
dc.contributor.authorGoebel, M. E.en
dc.contributor.authorGoldsworthy, S. D.en
dc.contributor.authorGuinet, C.en
dc.contributor.authorGunn, J.en
dc.contributor.authorHamer, D.en
dc.contributor.authorHammerschlag, N.en
dc.contributor.authorHammill, M.en
dc.contributor.authorHückstädt, L. A.en
dc.contributor.authorHumphries, N. E.en
dc.contributor.authorLea, M.-A.en
dc.contributor.authorLowther, A.en
dc.contributor.authorMackay, A.en
dc.contributor.authorMcHuron, E.en
dc.contributor.authorMcKenzie, J.en
dc.contributor.authorMcLeay, L.en
dc.contributor.authorMcMahon, C. R.en
dc.contributor.authorMengersen, K.en
dc.contributor.authorMuelbert, M. M. C.en
dc.contributor.authorPagano, A. M.en
dc.contributor.authorPage, B.en
dc.contributor.authorQueiroz, N.en
dc.contributor.authorRobinson, P. W.en
dc.contributor.authorShaffer, S. A.en
dc.contributor.authorShivji, M.en
dc.contributor.authorSkomal, G. B.en
dc.contributor.authorThorrold, S. R.en
dc.contributor.authorVillegas-Amtmann, S.en
dc.contributor.authorWeise, M.en
dc.contributor.authorWells, R.en
dc.contributor.authorWetherbee, B.en
dc.contributor.authorWiebkin, A.en
dc.contributor.authorWienecke, B.en
dc.contributor.authorThums, M.en
dc.date.accessioned2018-03-01T12:14:06Z-
dc.date.available2018-03-01T12:14:06Z-
dc.date.issued2018-02-26en
dc.identifier.citationSequeira AMM, Rodríguez JP, Eguíluz VM, Harcourt R, Hindell M, et al. (2018) Convergence of marine megafauna movement patterns in coastal and open oceans. Proceedings of the National Academy of Sciences: 201716137. Available: http://dx.doi.org/10.1073/pnas.1716137115.en
dc.identifier.issn0027-8424en
dc.identifier.issn1091-6490en
dc.identifier.doi10.1073/pnas.1716137115en
dc.identifier.urihttp://hdl.handle.net/10754/627221-
dc.description.abstractThe extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals' movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyze a global dataset of ∼2.8 million locations from >2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared with more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal microhabitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise, and declining oxygen content.en
dc.description.sponsorshipWe are thankful to I. Jonsen for initial discussions and all involved with the many aspects of fieldwork and data collection; details are included in SI Appendix, Acknowledgments. Workshop funding was granted by the University of Western Australia (UWA) Oceans Institute, the Australian Institute of Marine Science (AIMS), and King Abdullah University of Science and Technology (KAUST). A.M.M.S. was supported by Australian Research Council Grant DE170100841 and an Indian Ocean Ocean Marine Research Centre (UWA, AIMS, Commonwealth of Scientific and Industrial Research Organisation) fellowship. J.P.R., V.M.E., and J.F.G. were supported by Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER) through project Spatiotemporality in Sociobological Interactions, Models and Methods (SPASIMM) (FIS2016-80067-P AEI/FEDER, European Union), and by research funding from KAUST. J.P.R. was supported by Ministerio de Educación, Cultura y Deporte (Formación de Profesorado Universitario Grant, Spain). D.W.S. was supported by the UK Natural Environment Research Council and Save Our Seas Foundation. N.Q. was supported by Fundação para a Ciência e Tecnologia (Portugal). M.M.C.M. was supported by a Coordenação de Aperfeiçoamento de pessoal de Nível Superior fellowship (Ministry of Education).en
dc.publisherProceedings of the National Academy of Sciencesen
dc.relation.urlhttp://www.pnas.org/content/early/2018/02/16/1716137115en
dc.rightsArchived with thanks to Proceedings of the National Academy of Sciencesen
dc.subjectprobability density functionen
dc.subjectRoot-mean-squareen
dc.subjectTurning Anglesen
dc.subjectGlobal Satellite Trackingen
dc.subjectDisplacementsen
dc.titleConvergence of marine megafauna movement patterns in coastal and open oceansen
dc.typeArticleen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.contributor.departmentMarine Science Programen
dc.contributor.departmentRed Sea Research Center (RSRC)en
dc.identifier.journalProceedings of the National Academy of Sciencesen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionana.sequeira@uwa.edu.au.en
dc.contributor.institutionUWA Oceans Institute, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australiaen
dc.contributor.institutionInstituto de Física Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Científicas-University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.en
dc.contributor.institutionDepartment of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.en
dc.contributor.institutionEcology and Biodiversity Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7004, Australia.en
dc.contributor.institutionMarine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom.en
dc.contributor.institutionUWA Oceans Institute, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australia.en
dc.contributor.institutionDepartment of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060.en
dc.contributor.institutionAustralian Institute of Marine Science, Indian Ocean Marine Research Centre (M096), University of Western Australia, Crawley, WA 6009, Australia.en
dc.contributor.institutionSchool of Life and Environmental Sciences, Deakin University, Warrnambool, VIC 3280, Australia.en
dc.contributor.institutionAustralian Institute of Marine Science, Townsville, QLD 4810, Australia.en
dc.contributor.institutionUniversity Programs, Dauphin Island Sea Lab, Dauphin Island, AL 36528.en
dc.contributor.institutionSouth Australian Research and Development Institute, West Beach, SA 5024, Australia.en
dc.contributor.institutionSouth Atlantic Environmental Research Institute, FIQQ1ZZ Stanley, Falkland Islands.en
dc.contributor.institutionJoint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology-Woods Hole Oceanographic Institution, Cambridge, MA 02139.en
dc.contributor.institutionDepartment of Biological Sciences, University of Alaska, Anchorage, AK 99508.en
dc.contributor.institutionSchool of Mathematical Sciences, Queensland University of Technology, Brisbane, QL 4000, Australia.en
dc.contributor.institutionMarine Science Division, Department of Parks and Wildlife, Kensington, WA 6151, Australia.en
dc.contributor.institutionParis Science Lettre, Laboratoire d'Excellence CORAIL, Centre de Recherche Insulaire et Observatoire de l'Environnement 3278, Ecole Pratique des Hautes Etudes, 66860 Perpignan, France.en
dc.contributor.institutionAntarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037.en
dc.contributor.institutionCentre d'Études Biologiques de Chizé, UMR 7372 CNRS-Université de La Rochelle, 79360 Villiers-en-Bois, France.en
dc.contributor.institutionRosenstiel School of Marine and Atmospheric Science, Abess Center for Ecosystem Science and Policy, University of Miami, Miami, FL 33149.en
dc.contributor.institutionDepartment of Fisheries and Oceans, Maurice Lamontagne Institute, Mont Joli, QC G5H3Z4, Canada.en
dc.contributor.institutionAlaska Science Center, US Geological Survey, Anchorage, AK 99508.en
dc.contributor.institutionDepartment of Biological Sciences, San Jose State University, San Jose, CA 95192.en
dc.contributor.institutionGuy Harvey Research Institute, Halmos College of Natural Sciences & Oceanography, Nova Southeastern University, Dania Beach, FL 33004.en
dc.contributor.institutionShark Research Program, Massachusetts Division of Marine Fisheries, New Bedford, MA 02740.en
dc.contributor.institutionBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543.en
dc.contributor.institutionMarine Mammal Program, Office of Naval Research, Arlington, VA 22203-1995.en
dc.contributor.institutionSarasota Dolphin Research Program, Chicago Zoological Society, c/o Mote Marine Laboratory, Sarasota, FL 34236.en
dc.contributor.institutionAustralian Antarctic Division, Department of the Environment and Energy, Kingston, TAS 7052, Australia.en
kaust.authorBerumen, Michael L.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.