Revisiting the Aluminum Trimesate-based MOF (MIL-96): from Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture.

Handle URI:
http://hdl.handle.net/10754/626982
Title:
Revisiting the Aluminum Trimesate-based MOF (MIL-96): from Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture.
Authors:
Benzaqui, Marvin; S. Pillai, Renjith; Sabetghadam, Anahid; Benoit, Virginie; Normand, Périne; Marrot, Jerome; Menguy, Nicolas; Montero, David; Shepard, William; Tissot, Antoine; Martineau-Corcos, Charlotte; Sicard, Clémence; Mihaylov, Mihail; Carn, Florent; Beurroeis, Isabelle; Llewellyn, Philip L.; De Weireld, Guy; Hadjiivanov, Konstantin; Gascon, Jorge; Kapteijn, Freek; Maurin, Guillaume; Steunou, Nathalie; Serre, Christian
Abstract:
A microporous Al trimesate-based metal-organic framework (MOF), denoted MIL-96-(Al), was selected as a porous hybrid filler for the processing of mixed matrix membranes (MMMs) for CO2/N-2 postcombustion separation. First, the structural model of MIL-96-(Al) initially reported was revisited using a combination of synchrotron-based single-crystal X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and density functional theory (DFT) calculations. In a second step, pure MIL-96-(Al) crystals differing by their size and aspect ratio, including anisotropic hexagonal platelets and nanoparticles of about 70 nm in diameter, were prepared. Then, a combination of in situ IR spectroscopy, single-gas, and CO2/N-2 coadsorption experiments, calorimetry, and molecular simulations revealed that MIL-96-(Al) nanoparticles show a relatively high CO2 affinity over N-2 owing to strong interactions between CO2 molecules and several adsorption sites such as Al3+ Lewis centers, coordinated water, and hydroxyl groups. Finally, the high compatibility between MIL-96-(Al) nanoparticles and the 6FDA-DAM polymer allowed the processing of homogeneous and defect-free MMMs with a high MOF loading (up to 25 wt %) that outperform pure polymer membranes for CO2/N-2 separation.
KAUST Department:
KAUST Catalysis Center (KCC)
Citation:
Benzaqui M, Pillai RS, Sabetghadam A, Benoit V, Normand P, et al. (2017) Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture. Chemistry of Materials 29: 10326–10338. Available: http://dx.doi.org/10.1021/acs.chemmater.7b03203.
Publisher:
American Chemical Society (ACS)
Journal:
Chemistry of Materials
Issue Date:
8-Nov-2017
DOI:
10.1021/acs.chemmater.7b03203
Type:
Article
ISSN:
0897-4756; 1520-5002
Sponsors:
We acknowledge the European Community Seventh Framework Program (FP7/2007-2013) for funding the research presented in this article under Grant Agreement No. 608490 (Project M4CO2). We thank IMPC FR2482 for SEM-FEG instrumentation funded by CNRS, UPMC, and C'Nano projects of Region Ile-de-France. We also acknowledge synchrotrons SOLEIL (Saint-Aubin, France) and ALBA (Barcelona, Spain) for SAXS beam time allocation. We additionally thank Thomas Bizien (SWING, SOLEIL) for his help during SAXS experiments and the staff of the PROMMA 2A at SOLEIL for technical assistance. G.M. thanks Institut Universitaire de France for its support.
Additional Links:
http://pubs.acs.org/doi/10.1021/acs.chemmater.7b03203
Appears in Collections:
Articles; KAUST Catalysis Center (KCC)

Full metadata record

DC FieldValue Language
dc.contributor.authorBenzaqui, Marvinen
dc.contributor.authorS. Pillai, Renjithen
dc.contributor.authorSabetghadam, Anahiden
dc.contributor.authorBenoit, Virginieen
dc.contributor.authorNormand, Périneen
dc.contributor.authorMarrot, Jeromeen
dc.contributor.authorMenguy, Nicolasen
dc.contributor.authorMontero, Daviden
dc.contributor.authorShepard, Williamen
dc.contributor.authorTissot, Antoineen
dc.contributor.authorMartineau-Corcos, Charlotteen
dc.contributor.authorSicard, Clémenceen
dc.contributor.authorMihaylov, Mihailen
dc.contributor.authorCarn, Florenten
dc.contributor.authorBeurroeis, Isabelleen
dc.contributor.authorLlewellyn, Philip L.en
dc.contributor.authorDe Weireld, Guyen
dc.contributor.authorHadjiivanov, Konstantinen
dc.contributor.authorGascon, Jorgeen
dc.contributor.authorKapteijn, Freeken
dc.contributor.authorMaurin, Guillaumeen
dc.contributor.authorSteunou, Nathalieen
dc.contributor.authorSerre, Christianen
dc.date.accessioned2018-02-01T07:25:01Z-
dc.date.available2018-02-01T07:25:01Z-
dc.date.issued2017-11-08en
dc.identifier.citationBenzaqui M, Pillai RS, Sabetghadam A, Benoit V, Normand P, et al. (2017) Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture. Chemistry of Materials 29: 10326–10338. Available: http://dx.doi.org/10.1021/acs.chemmater.7b03203.en
dc.identifier.issn0897-4756en
dc.identifier.issn1520-5002en
dc.identifier.doi10.1021/acs.chemmater.7b03203en
dc.identifier.urihttp://hdl.handle.net/10754/626982-
dc.description.abstractA microporous Al trimesate-based metal-organic framework (MOF), denoted MIL-96-(Al), was selected as a porous hybrid filler for the processing of mixed matrix membranes (MMMs) for CO2/N-2 postcombustion separation. First, the structural model of MIL-96-(Al) initially reported was revisited using a combination of synchrotron-based single-crystal X-ray diffraction, solid-state nuclear magnetic resonance spectroscopy, and density functional theory (DFT) calculations. In a second step, pure MIL-96-(Al) crystals differing by their size and aspect ratio, including anisotropic hexagonal platelets and nanoparticles of about 70 nm in diameter, were prepared. Then, a combination of in situ IR spectroscopy, single-gas, and CO2/N-2 coadsorption experiments, calorimetry, and molecular simulations revealed that MIL-96-(Al) nanoparticles show a relatively high CO2 affinity over N-2 owing to strong interactions between CO2 molecules and several adsorption sites such as Al3+ Lewis centers, coordinated water, and hydroxyl groups. Finally, the high compatibility between MIL-96-(Al) nanoparticles and the 6FDA-DAM polymer allowed the processing of homogeneous and defect-free MMMs with a high MOF loading (up to 25 wt %) that outperform pure polymer membranes for CO2/N-2 separation.en
dc.description.sponsorshipWe acknowledge the European Community Seventh Framework Program (FP7/2007-2013) for funding the research presented in this article under Grant Agreement No. 608490 (Project M4CO2). We thank IMPC FR2482 for SEM-FEG instrumentation funded by CNRS, UPMC, and C'Nano projects of Region Ile-de-France. We also acknowledge synchrotrons SOLEIL (Saint-Aubin, France) and ALBA (Barcelona, Spain) for SAXS beam time allocation. We additionally thank Thomas Bizien (SWING, SOLEIL) for his help during SAXS experiments and the staff of the PROMMA 2A at SOLEIL for technical assistance. G.M. thanks Institut Universitaire de France for its support.en
dc.publisherAmerican Chemical Society (ACS)en
dc.relation.urlhttp://pubs.acs.org/doi/10.1021/acs.chemmater.7b03203en
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/acs.chemmater.7b03203.en
dc.titleRevisiting the Aluminum Trimesate-based MOF (MIL-96): from Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture.en
dc.typeArticleen
dc.contributor.departmentKAUST Catalysis Center (KCC)en
dc.identifier.journalChemistry of Materialsen
dc.eprint.versionPost-printen
dc.contributor.institutionInstitut des Matériaux Poreux de Paris, FRE 2000 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielle de Paris, PSL Research University, Paris, 75005, , , , Franceen
dc.contributor.institutionInstitut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles Saint Quentin en Yvelines, Université Paris Saclay, 45 avenue des Etats-Unis, Cedex Versailles, 78035, , , , Franceen
dc.contributor.institutionInstitut Charles Gerhardt Montpellier, UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, Cedex 05 Montpellier, 34095, , , Franceen
dc.contributor.institutionCatalysis Engineering-Chemical Engineering Department, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, , Netherlandsen
dc.contributor.institutionCNRS, MADIREL, UMR 7246, Aix Marseille University, Marseille, 13397, , , , Franceen
dc.contributor.institutionService de Thermodynamique et de Physique Mathématique, Faculté Polytechnique, Université de Mons, 20 Place du Parc, Mons, 7000, , , Belgiumen
dc.contributor.institutionInstitut de Minéralogie de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, MNHN IRD, UPMC Université Paris 06, Sorbonne Universités, 4 place Jussieu, Paris, 75005, , , , , , Franceen
dc.contributor.institutionInstitut des Matériaux de Paris Centre (IMPC), FR 2482 CNRS, UPMC Université Paris 06, Sorbonne Universités, 4 place Jussieu, Cedex 05 Paris, 75252, , , , Franceen
dc.contributor.institutionSynchrotron Soleil, L'Orme des Merisiers, Saint Aubin, BP 48, Gif-sur-Yvette, 91192, , Franceen
dc.contributor.institutionCNRS, CEMHTI UPR3079, Université d'Orléans, Orléans, F-45071, , , Franceen
dc.contributor.institutionInstitute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, 1113, , , Bulgariaen
dc.contributor.institutionLaboratoire Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Diderot, Bâtiment Condorcet, 10 rue A. Domon et L. Duquet, Paris, 75013, , , Franceen
kaust.authorGascon, Jorgeen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.