Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell

Handle URI:
http://hdl.handle.net/10754/626892
Title:
Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell
Authors:
Bahabry, Rabab R. ( 0000-0001-7866-6660 ) ; Kutbee, Arwa T. ( 0000-0002-1191-0101 ) ; Khan, Sherjeel M.; Sepulveda, Adrian C.; Wicaksono, Irmandy; Nour, Maha A.; Wehbe, Nimer; Almislem, Amani Saleh Saad; Ghoneim, Mohamed T. ( 0000-0002-5568-5284 ) ; Sevilla, Galo T. ( 0000-0002-9419-4437 ) ; Syed, Ahad; Shaikh, Sohail F. ( 0000-0001-7640-0105 ) ; Hussain, Muhammad Mustafa ( 0000-0003-3279-0441 )
Abstract:
Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.
KAUST Department:
Physical Sciences and Engineering (PSE) Division; Materials Science and Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Electrical Engineering Program; Integrated Disruptive Electronic Applications (IDEA) Lab; Integrated Nanotechnology Lab; Imaging and Characterization Core Lab; Advanced Nanofabrication and Thin Film Core Lab
Citation:
Bahabry RR, Kutbee AT, Khan SM, Sepulveda AC, Wicaksono I, et al. (2018) Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell. Advanced Energy Materials: 1702221. Available: http://dx.doi.org/10.1002/aenm.201702221.
Publisher:
Wiley-Blackwell
Journal:
Advanced Energy Materials
Issue Date:
2-Jan-2018
DOI:
10.1002/aenm.201702221
Type:
Article
ISSN:
1614-6832
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201702221/full
Appears in Collections:
Articles; Advanced Nanofabrication, Imaging and Characterization Core Lab; Physical Sciences and Engineering (PSE) Division; Electrical Engineering Program; Materials Science and Engineering Program; Integrated Nanotechnology Lab; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorBahabry, Rabab R.en
dc.contributor.authorKutbee, Arwa T.en
dc.contributor.authorKhan, Sherjeel M.en
dc.contributor.authorSepulveda, Adrian C.en
dc.contributor.authorWicaksono, Irmandyen
dc.contributor.authorNour, Maha A.en
dc.contributor.authorWehbe, Nimeren
dc.contributor.authorAlmislem, Amani Saleh Saaden
dc.contributor.authorGhoneim, Mohamed T.en
dc.contributor.authorSevilla, Galo T.en
dc.contributor.authorSyed, Ahaden
dc.contributor.authorShaikh, Sohail F.en
dc.contributor.authorHussain, Muhammad Mustafaen
dc.date.accessioned2018-01-28T07:22:28Z-
dc.date.available2018-01-28T07:22:28Z-
dc.date.issued2018-01-02en
dc.identifier.citationBahabry RR, Kutbee AT, Khan SM, Sepulveda AC, Wicaksono I, et al. (2018) Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell. Advanced Energy Materials: 1702221. Available: http://dx.doi.org/10.1002/aenm.201702221.en
dc.identifier.issn1614-6832en
dc.identifier.doi10.1002/aenm.201702221en
dc.identifier.urihttp://hdl.handle.net/10754/626892-
dc.description.abstractAdvanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large-scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon-based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor-based integration strategy where corrugation architecture enables ultraflexible and low-cost solar cell modules from bulk monocrystalline large-scale (127 × 127 cm) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 μm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon-based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 μm of the back contacts is shown that carries the solar cells segments.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/aenm.201702221/fullen
dc.rightsThis is the peer reviewed version of the following article: Corrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cell, which has been published in final form at http://doi.org/10.1002/aenm.201702221. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.en
dc.subjectC-Si solar cellsen
dc.subjectCMOS devicesen
dc.subjectFlexible PVen
dc.subjectHigh efficiencyen
dc.subjectLarge-scale photovoltaicsen
dc.titleCorrugation Architecture Enabled Ultraflexible Wafer-Scale High-Efficiency Monocrystalline Silicon Solar Cellen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentMaterials Science and Engineering Programen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentElectrical Engineering Programen
dc.contributor.departmentIntegrated Disruptive Electronic Applications (IDEA) Laben
dc.contributor.departmentIntegrated Nanotechnology Laben
dc.contributor.departmentImaging and Characterization Core Laben
dc.contributor.departmentAdvanced Nanofabrication and Thin Film Core Laben
dc.identifier.journalAdvanced Energy Materialsen
dc.eprint.versionPost-printen
dc.contributor.institutionDepartment of Electrical Engineering and Information Technology; Swiss Federal Institute of Technology (ETH) Zurich; Rämistrasse 101 Zürich 8092 Switzerlanden
kaust.authorBahabry, Rabab R.en
kaust.authorKutbee, Arwa T.en
kaust.authorKhan, Sherjeel M.en
kaust.authorSepulveda, Adrian C.en
kaust.authorNour, Maha A.en
kaust.authorWehbe, Nimeren
kaust.authorAlmislem, Amani Saleh Saaden
kaust.authorGhoneim, Mohamed T.en
kaust.authorSevilla, Galo T.en
kaust.authorSyed, Ahaden
kaust.authorShaikh, Sohail F.en
kaust.authorHussain, Muhammad Mustafaen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.