The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?

Handle URI:
http://hdl.handle.net/10754/626731
Title:
The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?
Authors:
Bach, Benjamin; Sicat, Ronell; Beyer, Johanna; Cordeil, Maxime; Pfister, Hanspeter
Abstract:
We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user's real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.
Citation:
Bach B, Sicat R, Beyer J, Cordeil M, Pfister H (2018) The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality? IEEE Transactions on Visualization and Computer Graphics 24: 457–467. Available: http://dx.doi.org/10.1109/tvcg.2017.2745941.
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Journal:
IEEE Transactions on Visualization and Computer Graphics
KAUST Grant Number:
OSR-2015-CCF-2533-01
Issue Date:
29-Aug-2017
DOI:
10.1109/tvcg.2017.2745941
Type:
Article
ISSN:
1077-2626
Sponsors:
This work was supported in part by NIH grant U01CA200059 and by the King Abdullah University of Science and Technology (KAUST) under award OSR-2015-CCF-2533-01.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorBach, Benjaminen
dc.contributor.authorSicat, Ronellen
dc.contributor.authorBeyer, Johannaen
dc.contributor.authorCordeil, Maximeen
dc.contributor.authorPfister, Hanspeteren
dc.date.accessioned2018-01-04T07:51:42Z-
dc.date.available2018-01-04T07:51:42Z-
dc.date.issued2017-08-29en
dc.identifier.citationBach B, Sicat R, Beyer J, Cordeil M, Pfister H (2018) The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality? IEEE Transactions on Visualization and Computer Graphics 24: 457–467. Available: http://dx.doi.org/10.1109/tvcg.2017.2745941.en
dc.identifier.issn1077-2626en
dc.identifier.doi10.1109/tvcg.2017.2745941en
dc.identifier.urihttp://hdl.handle.net/10754/626731-
dc.description.abstractWe report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user's real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.en
dc.description.sponsorshipThis work was supported in part by NIH grant U01CA200059 and by the King Abdullah University of Science and Technology (KAUST) under award OSR-2015-CCF-2533-01.en
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.subjectAugmented Realityen
dc.subject3D Interactionen
dc.subjectUser Studyen
dc.subjectImmersive Displaysen
dc.titleThe Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?en
dc.typeArticleen
dc.identifier.journalIEEE Transactions on Visualization and Computer Graphicsen
dc.contributor.institutionHarvard Universityen
dc.contributor.institutionMonash Universityen
kaust.grant.numberOSR-2015-CCF-2533-01en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.