Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source

Handle URI:
http://hdl.handle.net/10754/626690
Title:
Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source
Authors:
Shemis, M.A.; Khan, M.T.A.; Alkhazraji, E.; Ragheb, A.M.; Esmail, M.A.; Fathallah, H.; Qureshi, K.K.; Alshebeili, S.; Khan, M.Z.M.
Abstract:
The next generation of optical access communication networks that support 100 Gbps and beyond, require advances in modulation schemes, spectrum utilization, new transmission bands, and efficient devices, particularly laser diodes. In this paper, we investigated the viability of new-class of InAs/InP Quantum-dash laser diode (Qdash-LD) exhibiting multiple longitudinal light modes in the L-band to carry high-speed data rate for access network applications. We exploited external and self injection-locking techniques on Qdash-LD to generate large number of stable and tunable locked modes, and compared them. To stem the capability of each locked mode as a potential subcarrier, data transmission is carried out over two mediums; single mode fiber (SMF) and free space optics (FSO) to emulate real deployment scenarios of optical networks. The results showed that with external-injection locking (EIL), an error-free transmission of 100 Gbps dual polarization quadrature phase shift keying (DP-QPSK) signal is demonstrated over 10 km SMF and 4 m indoor FSO channels, with capability of reaching up to 128 Gbps, demonstrated under back-to-back (BTB) configuration. On the other hand, using self-injection locking (SIL) scheme, a successful data transmission of 64 Gbps and 128 Gbps DP-QPSK signal over 20 km SMF and 10 m indoor FSO links, respectively, is achieved.
Citation:
Shemis MA, Khan MTA, Alkhazraji E, Ragheb AM, Esmail MA, et al. (2018) Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source. Optics Communications 410: 680–684. Available: http://dx.doi.org/10.1016/j.optcom.2017.10.080.
Publisher:
Elsevier BV
Journal:
Optics Communications
Issue Date:
23-Nov-2017
DOI:
10.1016/j.optcom.2017.10.080
Type:
Article
ISSN:
0030-4018
Sponsors:
This work was supported, in part by King Fahd University of Petroleum and Minerals through KAUST004 grant, in part by King Saud University under research group no. RG-1438–092, and in part by KACST-TIC in SSL . M. Z. M. K gratefully acknowledge contributions from Prof. B. S. Ooi and Dr. T. K. Ng from King Abdullah University of Science and Technology (KAUST), as well as Prof. P. Bhattacharya, and Dr. C-S. Lee from University of Michigan.
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorShemis, M.A.en
dc.contributor.authorKhan, M.T.A.en
dc.contributor.authorAlkhazraji, E.en
dc.contributor.authorRagheb, A.M.en
dc.contributor.authorEsmail, M.A.en
dc.contributor.authorFathallah, H.en
dc.contributor.authorQureshi, K.K.en
dc.contributor.authorAlshebeili, S.en
dc.contributor.authorKhan, M.Z.M.en
dc.date.accessioned2018-01-04T07:51:39Z-
dc.date.available2018-01-04T07:51:39Z-
dc.date.issued2017-11-23en
dc.identifier.citationShemis MA, Khan MTA, Alkhazraji E, Ragheb AM, Esmail MA, et al. (2018) Demonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser source. Optics Communications 410: 680–684. Available: http://dx.doi.org/10.1016/j.optcom.2017.10.080.en
dc.identifier.issn0030-4018en
dc.identifier.doi10.1016/j.optcom.2017.10.080en
dc.identifier.urihttp://hdl.handle.net/10754/626690-
dc.description.abstractThe next generation of optical access communication networks that support 100 Gbps and beyond, require advances in modulation schemes, spectrum utilization, new transmission bands, and efficient devices, particularly laser diodes. In this paper, we investigated the viability of new-class of InAs/InP Quantum-dash laser diode (Qdash-LD) exhibiting multiple longitudinal light modes in the L-band to carry high-speed data rate for access network applications. We exploited external and self injection-locking techniques on Qdash-LD to generate large number of stable and tunable locked modes, and compared them. To stem the capability of each locked mode as a potential subcarrier, data transmission is carried out over two mediums; single mode fiber (SMF) and free space optics (FSO) to emulate real deployment scenarios of optical networks. The results showed that with external-injection locking (EIL), an error-free transmission of 100 Gbps dual polarization quadrature phase shift keying (DP-QPSK) signal is demonstrated over 10 km SMF and 4 m indoor FSO channels, with capability of reaching up to 128 Gbps, demonstrated under back-to-back (BTB) configuration. On the other hand, using self-injection locking (SIL) scheme, a successful data transmission of 64 Gbps and 128 Gbps DP-QPSK signal over 20 km SMF and 10 m indoor FSO links, respectively, is achieved.en
dc.description.sponsorshipThis work was supported, in part by King Fahd University of Petroleum and Minerals through KAUST004 grant, in part by King Saud University under research group no. RG-1438–092, and in part by KACST-TIC in SSL . M. Z. M. K gratefully acknowledge contributions from Prof. B. S. Ooi and Dr. T. K. Ng from King Abdullah University of Science and Technology (KAUST), as well as Prof. P. Bhattacharya, and Dr. C-S. Lee from University of Michigan.en
dc.publisherElsevier BVen
dc.subjectInAs/InP quantum-dash lasersen
dc.subjectExternal-injection lockingen
dc.subjectSelf-injection lockingen
dc.subjectOptical access networksen
dc.subjectFree space optical communicationen
dc.subjectFiber optics communicationen
dc.titleDemonstration of L-band DP-QPSK transmission over FSO and fiber channels employing InAs/InP quantum-dash laser sourceen
dc.typeArticleen
dc.identifier.journalOptics Communicationsen
dc.contributor.institutionOptoelectronics Research Laboratory, Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabiaen
dc.contributor.institutionDepartment of Electrical and Electronics Engineering Technology, Jubail Industrial College, Jubail 31951, Saudi Arabiaen
dc.contributor.institutionKACST-TIC in Radio Frequency and Photonics for the e-Society, Riyadh 11421, Saudi Arabiaen
dc.contributor.institutionComputer Department of the College of Science of Bizerte, University of Carthage, Tunis 1054, Tunisiaen
dc.contributor.institutionElectrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabiaen
dc.contributor.institutionElectrical Engineering Department, King Saud University, Riyadh 11421, Saudi Arabiaen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.