Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

Handle URI:
http://hdl.handle.net/10754/626072
Title:
Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin
Authors:
Wu, Sin-Mei ( 0000-0001-8330-471X ) ; Ward, Kevin M. ( 0000-0002-2938-4306 ) ; Farrell, Jamie ( 0000-0003-0620-6168 ) ; Lin, Fan-Chi ( 0000-0003-0394-6830 ) ; Karplus, Marianne; Smith, Robert B. ( 0000-0002-9260-4500 )
Abstract:
The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh-wave seismic signals between 1-10 Hz utilizing non-diffusive seismic waves excited by nearby active hydrothermal features with the following results. 1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, 2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and 3) resolving a relatively shallow (10-60 m) and large reservoir located ~100 m southwest of Old Faithful geyser.
Citation:
Wu S-M, Ward KM, Farrell J, Lin F-C, Karplus M, et al. (2017) Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin. Geophysical Research Letters. Available: http://dx.doi.org/10.1002/2017gl075255.
Publisher:
Wiley-Blackwell
Journal:
Geophysical Research Letters
KAUST Grant Number:
OCRF-2014-CRG3-2300
Issue Date:
3-Oct-2017
DOI:
10.1002/2017gl075255
Type:
Article
ISSN:
0094-8276
Sponsors:
We would like to thank Jacob Lowenstern and Shaul Hurwitz for the thorough reviews, the valuable comments and suggestions have greatly benefited this manuscript. This research is supported by NSF grant CyberSEES-1442665 and the King Abdullah University of Science and Technology (KAUST) under award OCRF-2014-CRG3-2300. We especially thank the National Park Service, Yellowstone National Park, for permission to conduct this field experiment, YNP permit # YELL-2015-SCI-0114, and for providing collaborative support and field personnel. We also thank FairfieldNodal for sending two engineers to assist us with the deployment. Fieldwork for this project was partially supported by the Brinson Foundation and the Carrico Fund. The noise cross-correlations used in this study can be downloaded from http://noise.earth.utah.edu/UGB_CCF_GRL_2017.tar
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorWu, Sin-Meien
dc.contributor.authorWard, Kevin M.en
dc.contributor.authorFarrell, Jamieen
dc.contributor.authorLin, Fan-Chien
dc.contributor.authorKarplus, Marianneen
dc.contributor.authorSmith, Robert B.en
dc.date.accessioned2017-11-01T08:19:11Z-
dc.date.available2017-11-01T08:19:11Z-
dc.date.issued2017-10-03en
dc.identifier.citationWu S-M, Ward KM, Farrell J, Lin F-C, Karplus M, et al. (2017) Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin. Geophysical Research Letters. Available: http://dx.doi.org/10.1002/2017gl075255.en
dc.identifier.issn0094-8276en
dc.identifier.doi10.1002/2017gl075255en
dc.identifier.urihttp://hdl.handle.net/10754/626072-
dc.description.abstractThe Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh-wave seismic signals between 1-10 Hz utilizing non-diffusive seismic waves excited by nearby active hydrothermal features with the following results. 1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, 2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and 3) resolving a relatively shallow (10-60 m) and large reservoir located ~100 m southwest of Old Faithful geyser.en
dc.description.sponsorshipWe would like to thank Jacob Lowenstern and Shaul Hurwitz for the thorough reviews, the valuable comments and suggestions have greatly benefited this manuscript. This research is supported by NSF grant CyberSEES-1442665 and the King Abdullah University of Science and Technology (KAUST) under award OCRF-2014-CRG3-2300. We especially thank the National Park Service, Yellowstone National Park, for permission to conduct this field experiment, YNP permit # YELL-2015-SCI-0114, and for providing collaborative support and field personnel. We also thank FairfieldNodal for sending two engineers to assist us with the deployment. Fieldwork for this project was partially supported by the Brinson Foundation and the Carrico Fund. The noise cross-correlations used in this study can be downloaded from http://noise.earth.utah.edu/UGB_CCF_GRL_2017.taren
dc.publisherWiley-Blackwellen
dc.titleAnatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basinen
dc.typeArticleen
dc.identifier.journalGeophysical Research Lettersen
dc.contributor.institutionDepartment of Geology and Geophysics; University of Utah; Salt Lake City UT 84112en
dc.contributor.institutionDepartment of Geological Sciences; University of Texas at El Paso; El Paso TX 79968en
kaust.grant.numberOCRF-2014-CRG3-2300en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.