Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction

Handle URI:
http://hdl.handle.net/10754/626041
Title:
Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction
Authors:
Chen, Yen-Chang; Lu, Ang-Yu; Lu, Ping; Yang, Xiulin ( 0000-0003-2642-4963 ) ; Jiang, Chang-Ming; Mariano, Marina; Kaehr, Brian; Lin, Oliver; Taylor, André; Sharp, Ian D.; Li, Lain-Jong ( 0000-0002-4059-7783 ) ; Chou, Stanley S.; Tung, Vincent ( 0000-0003-3230-0932 )
Abstract:
The emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Citation:
Chen Y-C, Lu A-Y, Lu P, Yang X, Jiang C-M, et al. (2017) Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials: 1703863. Available: http://dx.doi.org/10.1002/adma.201703863.
Publisher:
Wiley-Blackwell
Journal:
Advanced Materials
Issue Date:
12-Oct-2017
DOI:
10.1002/adma.201703863
Type:
Article
ISSN:
0935-9648
Sponsors:
Y.-C.C. and A.-Y.L. contributed equally to this work. V.T. gratefully acknowledges the research award from the Doctoral New Investigator Award from ACS Petroleum Fund (ACS PRF 54717-DNI10, V.T.). Characterization and fabrication of HER electrodes in this work were performed as User Proposals (#4240) at the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Raman spectroscopy was performed at the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Y.C. acknowledges the fellowship support from National Aeronautics and Space Administration (NASA) grant no. NNX15AQ01. Work at Sandia, including experimental design, materials synthesis, microscopy, were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Equipment at Sandia were furnished with support from the Laboratory Directed Research and Development programs. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. A.Y.L, X.Y., and L.J.L. acknowledge the support from KAUST. V.T. is indebted to Dr. Hidetaka Ishihara, Xuan Wei, Jose Hernandez, Teresa L. Chen, and Vipawee Limsakoune, for the fruitful discussion in droplet dynamics and assistance in instrumentation.
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/adma.201703863/full
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorChen, Yen-Changen
dc.contributor.authorLu, Ang-Yuen
dc.contributor.authorLu, Pingen
dc.contributor.authorYang, Xiulinen
dc.contributor.authorJiang, Chang-Mingen
dc.contributor.authorMariano, Marinaen
dc.contributor.authorKaehr, Brianen
dc.contributor.authorLin, Oliveren
dc.contributor.authorTaylor, Andréen
dc.contributor.authorSharp, Ian D.en
dc.contributor.authorLi, Lain-Jongen
dc.contributor.authorChou, Stanley S.en
dc.contributor.authorTung, Vincenten
dc.date.accessioned2017-10-30T08:39:52Z-
dc.date.available2017-10-30T08:39:52Z-
dc.date.issued2017-10-12en
dc.identifier.citationChen Y-C, Lu A-Y, Lu P, Yang X, Jiang C-M, et al. (2017) Structurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials: 1703863. Available: http://dx.doi.org/10.1002/adma.201703863.en
dc.identifier.issn0935-9648en
dc.identifier.doi10.1002/adma.201703863en
dc.identifier.urihttp://hdl.handle.net/10754/626041-
dc.description.abstractThe emerging molybdenum disulfide (MoS2) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS2 (ce-MoS2) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.en
dc.description.sponsorshipY.-C.C. and A.-Y.L. contributed equally to this work. V.T. gratefully acknowledges the research award from the Doctoral New Investigator Award from ACS Petroleum Fund (ACS PRF 54717-DNI10, V.T.). Characterization and fabrication of HER electrodes in this work were performed as User Proposals (#4240) at the Molecular Foundry, Lawrence Berkeley National Lab, supported by the Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Raman spectroscopy was performed at the Joint Center for Artificial Photosynthesis (JCAP), a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. Y.C. acknowledges the fellowship support from National Aeronautics and Space Administration (NASA) grant no. NNX15AQ01. Work at Sandia, including experimental design, materials synthesis, microscopy, were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Equipment at Sandia were furnished with support from the Laboratory Directed Research and Development programs. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. A.Y.L, X.Y., and L.J.L. acknowledge the support from KAUST. V.T. is indebted to Dr. Hidetaka Ishihara, Xuan Wei, Jose Hernandez, Teresa L. Chen, and Vipawee Limsakoune, for the fruitful discussion in droplet dynamics and assistance in instrumentation.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/adma.201703863/fullen
dc.subjectBioinspired dimensional transitionsen
dc.subjectHydrogen evolution reactionsen
dc.subjectMolybdenum disulfideen
dc.titleStructurally Deformed MoS2 for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reactionen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalAdvanced Materialsen
dc.contributor.institutionMolecular Foundry; Lawrence Berkeley National Lab; Berkeley CA 94720 USAen
dc.contributor.institutionSchool of Engineering; University of California; Merced CA 95343 USAen
dc.contributor.institutionDepartment of Electronic; Optical and Nanomaterials; Sandia National Lab; Albuquerque NM 87106 USAen
dc.contributor.institutionChemical Sciences Division and Joint Center for Artificial Photosynthesis; Lawrence Berkeley; National Lab; Berkeley CA 94720 USAen
dc.contributor.institutionSchool of Engineering and Applied Science; Yale University; New Haven CT 06520 USAen
kaust.authorLu, Ang-Yuen
kaust.authorYang, Xiulinen
kaust.authorLi, Lain-Jongen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.