Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection

Handle URI:
http://hdl.handle.net/10754/626001
Title:
Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection
Authors:
El-Amin, Mohamed ( 0000-0002-1099-2299 ) ; Kou, Jisheng; Sun, Shuyu ( 0000-0002-3078-864X )
Abstract:
Purpose In this paper, we introduce modeling, numerical simulation, and convergence analysis of the problem nanoparticles transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles concentration, deposited nanoparticles concentration on the pore-walls, and entrapped nanoparticles concentration in pore-throats. Design/methodology/approach Nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated. Findings We stated and proved three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions. The theorem is proved by induction states that after a number of iterations the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, while the error estimations are presented in table for different values of number of time steps, number of iterations and mesh size. Research limitations/implications The domain of the computations is relatively small however, it is straightforward to extend this method to oil reservoir (large) domain keeping similar definitions of CFL number and other physical parameters. Originality/value The model of the problem under consideration is not studied before. Also, both solution technique and convergence analysis are not used before with this model.
KAUST Department:
Physical Sciences and Engineering (PSE) Division; Earth Science and Engineering Program
Citation:
El-Amin M, Kou J, Sun S (2017) Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection. International Journal of Numerical Methods for Heat & Fluid Flow 27: 2289–2317. Available: http://dx.doi.org/10.1108/hff-05-2016-0210.
Publisher:
Emerald
Journal:
International Journal of Numerical Methods for Heat & Fluid Flow
Issue Date:
29-Aug-2017
DOI:
10.1108/hff-05-2016-0210
Type:
Article
ISSN:
0961-5539
Additional Links:
http://www.emeraldinsight.com/doi/abs/10.1108/HFF-05-2016-0210
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Earth Science and Engineering Program

Full metadata record

DC FieldValue Language
dc.contributor.authorEl-Amin, Mohameden
dc.contributor.authorKou, Jishengen
dc.contributor.authorSun, Shuyuen
dc.date.accessioned2017-10-30T08:39:49Z-
dc.date.available2017-10-30T08:39:49Z-
dc.date.issued2017-08-29en
dc.identifier.citationEl-Amin M, Kou J, Sun S (2017) Convergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injection. International Journal of Numerical Methods for Heat & Fluid Flow 27: 2289–2317. Available: http://dx.doi.org/10.1108/hff-05-2016-0210.en
dc.identifier.issn0961-5539en
dc.identifier.doi10.1108/hff-05-2016-0210en
dc.identifier.urihttp://hdl.handle.net/10754/626001-
dc.description.abstractPurpose In this paper, we introduce modeling, numerical simulation, and convergence analysis of the problem nanoparticles transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles concentration, deposited nanoparticles concentration on the pore-walls, and entrapped nanoparticles concentration in pore-throats. Design/methodology/approach Nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated. Findings We stated and proved three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions. The theorem is proved by induction states that after a number of iterations the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, while the error estimations are presented in table for different values of number of time steps, number of iterations and mesh size. Research limitations/implications The domain of the computations is relatively small however, it is straightforward to extend this method to oil reservoir (large) domain keeping similar definitions of CFL number and other physical parameters. Originality/value The model of the problem under consideration is not studied before. Also, both solution technique and convergence analysis are not used before with this model.en
dc.publisherEmeralden
dc.relation.urlhttp://www.emeraldinsight.com/doi/abs/10.1108/HFF-05-2016-0210en
dc.titleConvergence analysis of the nonlinear iterative method for two-phase flow in porous media associated with nanoparticle injectionen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentEarth Science and Engineering Programen
dc.identifier.journalInternational Journal of Numerical Methods for Heat & Fluid Flowen
dc.contributor.institutionHubei Engineering University, Xiaogan 432000, Hubei, China. Hubei Chinaen
kaust.authorEl-Amin, Mohameden
kaust.authorSun, Shuyuen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.