Handle URI:
http://hdl.handle.net/10754/625810
Title:
Wearable Optical Sensors
Authors:
Ballard, Zachary S.; Ozcan, Aydogan
Abstract:
The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.
Citation:
Ballard ZS, Ozcan A (2017) Wearable Optical Sensors. Mobile Health: 313–342. Available: http://dx.doi.org/10.1007/978-3-319-51394-2_16.
Publisher:
Springer International Publishing
Journal:
Mobile Health
Issue Date:
12-Jul-2017
DOI:
10.1007/978-3-319-51394-2_16
Type:
Book Chapter
Sponsors:
The Ozcan Research Group at UCLA gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers (PECASE), the Army Research Office (ARO; W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division, the National Science Foundation (NSF) CBET Division Biophotonics Program, the NSF Emerging Frontiers in Research and Innovation (EFRI) Award, the NSF EAGER Award, NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) Program, Office of Naval Research (ONR), King Abdullah University of Science and Technology (KAUST), and the Howard Hughes Medical Institute (HHMI). Zachary S. Ballard also acknowledges the support from the NSF Graduate Research Fellowship Program. This work is based upon research performed in a renovated laboratory renovated by the National Science Foundation under Grant No. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA).
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorBallard, Zachary S.en
dc.contributor.authorOzcan, Aydoganen
dc.date.accessioned2017-10-04T14:59:17Z-
dc.date.available2017-10-04T14:59:17Z-
dc.date.issued2017-07-12en
dc.identifier.citationBallard ZS, Ozcan A (2017) Wearable Optical Sensors. Mobile Health: 313–342. Available: http://dx.doi.org/10.1007/978-3-319-51394-2_16.en
dc.identifier.doi10.1007/978-3-319-51394-2_16en
dc.identifier.urihttp://hdl.handle.net/10754/625810-
dc.description.abstractThe market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.en
dc.description.sponsorshipThe Ozcan Research Group at UCLA gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers (PECASE), the Army Research Office (ARO; W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division, the National Science Foundation (NSF) CBET Division Biophotonics Program, the NSF Emerging Frontiers in Research and Innovation (EFRI) Award, the NSF EAGER Award, NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) Program, Office of Naval Research (ONR), King Abdullah University of Science and Technology (KAUST), and the Howard Hughes Medical Institute (HHMI). Zachary S. Ballard also acknowledges the support from the NSF Graduate Research Fellowship Program. This work is based upon research performed in a renovated laboratory renovated by the National Science Foundation under Grant No. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA).en
dc.publisherSpringer International Publishingen
dc.titleWearable Optical Sensorsen
dc.typeBook Chapteren
dc.identifier.journalMobile Healthen
dc.contributor.institutionDepartment of Electrical Engineering, University of California, Los Angeles, USAen
dc.contributor.institutionCalifornia NanoSystems Institute (CNSI), University of California, Los Angeles, USAen
dc.contributor.institutionDepartment of Surgery, University of California, Los Angeles, USAen
dc.contributor.institutionDepartment of Bioengineering, University of California, Los Angeles, USAen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.