Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact

Handle URI:
http://hdl.handle.net/10754/625760
Title:
Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact
Authors:
Park, Woojin; Min, Jung-Wook; Shaikh, Sohail F. ( 0000-0001-7640-0105 ) ; Hussain, Muhammad Mustafa ( 0000-0003-3279-0441 )
Abstract:
Molybdenum disulphide (MoS2) is an emerging 2-dimensional (2D) semiconductor for electronic devices. However, unstable and low performance of MoS2 FETs is an important concern. In this study, inserting an atomic layer deposition (ALD) titanium dioxide (TiO2) interfacial layer between contact metal and MoS2 channel is suggested to achieve more stable performances. The reduced threshold voltage (VTH) shift and reduced series resistance (RSD) were simultaneously achieved.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Electrical Engineering Program; Integrated Nanotechnology Lab; Photonics Laboratory
Citation:
Park W, Min J-W, Shaikh SF, Hussain MM (2017) Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact. physica status solidi (a): 1700534. Available: http://dx.doi.org/10.1002/pssa.201700534.
Publisher:
Wiley-Blackwell
Journal:
physica status solidi (a)
Issue Date:
7-Sep-2017
DOI:
10.1002/pssa.201700534
Type:
Article
ISSN:
1862-6300
Sponsors:
This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-Sensors-2707.
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/pssa.201700534/full
Appears in Collections:
Articles; Electrical Engineering Program; Integrated Nanotechnology Lab; Photonics Laboratory; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorPark, Woojinen
dc.contributor.authorMin, Jung-Wooken
dc.contributor.authorShaikh, Sohail F.en
dc.contributor.authorHussain, Muhammad Mustafaen
dc.date.accessioned2017-10-03T12:49:38Z-
dc.date.available2017-10-03T12:49:38Z-
dc.date.issued2017-09-07en
dc.identifier.citationPark W, Min J-W, Shaikh SF, Hussain MM (2017) Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact. physica status solidi (a): 1700534. Available: http://dx.doi.org/10.1002/pssa.201700534.en
dc.identifier.issn1862-6300en
dc.identifier.doi10.1002/pssa.201700534en
dc.identifier.urihttp://hdl.handle.net/10754/625760-
dc.description.abstractMolybdenum disulphide (MoS2) is an emerging 2-dimensional (2D) semiconductor for electronic devices. However, unstable and low performance of MoS2 FETs is an important concern. In this study, inserting an atomic layer deposition (ALD) titanium dioxide (TiO2) interfacial layer between contact metal and MoS2 channel is suggested to achieve more stable performances. The reduced threshold voltage (VTH) shift and reduced series resistance (RSD) were simultaneously achieved.en
dc.description.sponsorshipThis publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-Sensors-2707.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/pssa.201700534/fullen
dc.subjectContactsen
dc.subjectField-effect transistorsen
dc.subjectInterfacesen
dc.subjectMoS2en
dc.subjectThin filmsen
dc.subjectTiO2en
dc.titleStable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contacten
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentElectrical Engineering Programen
dc.contributor.departmentIntegrated Nanotechnology Laben
dc.contributor.departmentPhotonics Laboratoryen
dc.identifier.journalphysica status solidi (a)en
kaust.authorPark, Woojinen
kaust.authorMin, Jung-Wooken
kaust.authorShaikh, Sohail F.en
kaust.authorHussain, Muhammad Mustafaen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.