Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model

Handle URI:
http://hdl.handle.net/10754/625659
Title:
Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model
Authors:
Wu, Zedong; Alkhalifah, Tariq Ali ( 0000-0002-9363-9799 )
Abstract:
Reflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.
KAUST Department:
Seismic wave analysis group, King abdullah university of science and technology, Thuwal, Saudi arabia
Citation:
Wu Z, Alkhalifah T (2017) Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model. Geophysical Journal International 210: 1981–1992. Available: http://dx.doi.org/10.1093/gji/ggx283.
Publisher:
Oxford University Press (OUP)
Journal:
Geophysical Journal International
Issue Date:
4-Jul-2017
DOI:
10.1093/gji/ggx283
Type:
Article
ISSN:
0956-540X; 1365-246X
Additional Links:
https://academic.oup.com/gji/article-abstract/doi/10.1093/gji/ggx283/3933235/Efficient-scattering-angle-enrichment-for-a?redirectedFrom=fulltext
Appears in Collections:
Articles

Full metadata record

DC FieldValue Language
dc.contributor.authorWu, Zedongen
dc.contributor.authorAlkhalifah, Tariq Alien
dc.date.accessioned2017-10-03T12:49:32Z-
dc.date.available2017-10-03T12:49:32Z-
dc.date.issued2017-07-04en
dc.identifier.citationWu Z, Alkhalifah T (2017) Efficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity model. Geophysical Journal International 210: 1981–1992. Available: http://dx.doi.org/10.1093/gji/ggx283.en
dc.identifier.issn0956-540Xen
dc.identifier.issn1365-246Xen
dc.identifier.doi10.1093/gji/ggx283en
dc.identifier.urihttp://hdl.handle.net/10754/625659-
dc.description.abstractReflection-waveform inversion (RWI) can help us reduce the nonlinearity of the standard full-waveform inversion (FWI) by inverting for the background velocity model using the wave-path of a single scattered wavefield to an image. However, current RWI implementations usually neglect the multi-scattered energy, which will cause some artifacts in the image and the update of the background. To improve existing RWI implementations in taking multi-scattered energy into consideration, we split the velocity model into background and perturbation components, integrate them directly in the wave equation, and formulate a new optimization problem for both components. In this case, the perturbed model is no longer a single-scattering model, but includes all scattering. Through introducing a new cheap implementation of scattering angle enrichment, the separation of the background and perturbation components can be implemented efficiently. We optimize both components simultaneously to produce updates to the velocity model that is nonlinear with respect to both the background and the perturbation. The newly introduced perturbation model can absorb the non-smooth update of the background in a more consistent way. We apply the proposed approach on the Marmousi model with data that contain frequencies starting from 5 Hz to show that this method can converge to an accurate velocity starting from a linearly increasing initial velocity. Also, our proposed method works well when applied to a field data set.en
dc.publisherOxford University Press (OUP)en
dc.relation.urlhttps://academic.oup.com/gji/article-abstract/doi/10.1093/gji/ggx283/3933235/Efficient-scattering-angle-enrichment-for-a?redirectedFrom=fulltexten
dc.subjectFull waveform inversionen
dc.subjectAcousticen
dc.titleEfficient scattering-angle enrichment for a nonlinear inversion of the background and perturbations components of a velocity modelen
dc.typeArticleen
dc.contributor.departmentSeismic wave analysis group, King abdullah university of science and technology, Thuwal, Saudi arabiaen
dc.identifier.journalGeophysical Journal Internationalen
kaust.authorWu, Zedongen
kaust.authorAlkhalifah, Tariq Alien
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.