Structural Variations to a Donor Polymer with Low Energy Losses

Handle URI:
http://hdl.handle.net/10754/625321
Title:
Structural Variations to a Donor Polymer with Low Energy Losses
Authors:
Bazan, Guillermo C; Yuan, Jianyu; Ran, Niva; Ford, Michael; Wang, Ming; Kumar, Ravva Mehesh; Mai, Cheng-Kang; Liu, Xiaofeng; Bredas, Jean-Luc ( 0000-0001-7278-4471 ) ; Nguyen, Thuc-Quyen Thai; Ma, Wanli
Abstract:
Two regioregular narrow band gap conjugated polymers with a D’-A-D-A repeat unit architecture, namely PIFCF and PSFCF, were designed and synthesized. Both polymers contain strictly organized fluorobenzo[c][1,2,5]thiadiazole (FBT) orientations and different solubilizing side chains for solution processing. Compared to the previously reported asymmetric pyridyl-[2,1,3]thiadiazole (PT) based regioregular polymer, namely PIPCP, PIFCF and PSFCF exhibit wider band gaps, tighter π-π stacking, and improved hole mobilities. When incorporated into solar cells with fullerene acceptors, the Eloss = Eg - eVoc values of PIFCF and PSFCF devices are increased compared to solar cells based on PIPCP. Determination of Ect in these solar cells reveals that, relative to PIPCP, PIFCF solar cells lose more energy from Eg - Ect, and PSFCF solar cells lose more energy from both Eg - Ect and Ect - eVoc. The close structural relationship between PIPCP and PIFCF provides an excellent framework to establish molecular features that impact the relationship between Eg and Ect. Theoretical calculations predict that Eloss of PIFCF:PC61BM would be higher than in the case of PIPCP:PC61BM, due to greater Eg - Ect. These findings provide insight into the design of high performance, low voltage loss photovoltaic polymeric materials with desirable optoelectronic properties.
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Citation:
Bazan GC, Yuan J, Ran N, Ford M, Wang M, et al. (2017) Structural Variations to a Donor Polymer with Low Energy Losses. J Mater Chem A. Available: http://dx.doi.org/10.1039/c7ta05442d.
Publisher:
Royal Society of Chemistry (RSC)
Journal:
J. Mater. Chem. A
Issue Date:
1-Aug-2017
DOI:
10.1039/c7ta05442d
Type:
Article
ISSN:
2050-7488; 2050-7496
Sponsors:
J. Y. thanks the scholarship for China Scholarship Council (CSC), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions. Structural characterization efforts were supported by the National Science Foundation (DMR-1411240). Use of the Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. N.A.R., T.-Q.N., and G.C.B. acknowledge support from the Department of the Navy, Office of Naval Research (Award Nos. N00014-14-1-0580 and N00014-16-1-25200). We would like to thank Kathryn O'Hara for her help with X-ray scattering data collection. Work at KAUST was funded through the KAUST Competitive Research Grant Program. M.K.R. and J.L.B. acknowledge the KAUST IT Research Computing Team and Supercomputing Laboratory for providing outstanding assistance as well as computational and storage resources.
Additional Links:
http://pubs.rsc.org/en/Content/ArticleLanding/2017/TA/C7TA05442D#!divAbstract
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorBazan, Guillermo Cen
dc.contributor.authorYuan, Jianyuen
dc.contributor.authorRan, Nivaen
dc.contributor.authorFord, Michaelen
dc.contributor.authorWang, Mingen
dc.contributor.authorKumar, Ravva Meheshen
dc.contributor.authorMai, Cheng-Kangen
dc.contributor.authorLiu, Xiaofengen
dc.contributor.authorBredas, Jean-Lucen
dc.contributor.authorNguyen, Thuc-Quyen Thaien
dc.contributor.authorMa, Wanlien
dc.date.accessioned2017-08-10T11:43:34Z-
dc.date.available2017-08-10T11:43:34Z-
dc.date.issued2017-08-01en
dc.identifier.citationBazan GC, Yuan J, Ran N, Ford M, Wang M, et al. (2017) Structural Variations to a Donor Polymer with Low Energy Losses. J Mater Chem A. Available: http://dx.doi.org/10.1039/c7ta05442d.en
dc.identifier.issn2050-7488en
dc.identifier.issn2050-7496en
dc.identifier.doi10.1039/c7ta05442den
dc.identifier.urihttp://hdl.handle.net/10754/625321-
dc.description.abstractTwo regioregular narrow band gap conjugated polymers with a D’-A-D-A repeat unit architecture, namely PIFCF and PSFCF, were designed and synthesized. Both polymers contain strictly organized fluorobenzo[c][1,2,5]thiadiazole (FBT) orientations and different solubilizing side chains for solution processing. Compared to the previously reported asymmetric pyridyl-[2,1,3]thiadiazole (PT) based regioregular polymer, namely PIPCP, PIFCF and PSFCF exhibit wider band gaps, tighter π-π stacking, and improved hole mobilities. When incorporated into solar cells with fullerene acceptors, the Eloss = Eg - eVoc values of PIFCF and PSFCF devices are increased compared to solar cells based on PIPCP. Determination of Ect in these solar cells reveals that, relative to PIPCP, PIFCF solar cells lose more energy from Eg - Ect, and PSFCF solar cells lose more energy from both Eg - Ect and Ect - eVoc. The close structural relationship between PIPCP and PIFCF provides an excellent framework to establish molecular features that impact the relationship between Eg and Ect. Theoretical calculations predict that Eloss of PIFCF:PC61BM would be higher than in the case of PIPCP:PC61BM, due to greater Eg - Ect. These findings provide insight into the design of high performance, low voltage loss photovoltaic polymeric materials with desirable optoelectronic properties.en
dc.description.sponsorshipJ. Y. thanks the scholarship for China Scholarship Council (CSC), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions. Structural characterization efforts were supported by the National Science Foundation (DMR-1411240). Use of the Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. N.A.R., T.-Q.N., and G.C.B. acknowledge support from the Department of the Navy, Office of Naval Research (Award Nos. N00014-14-1-0580 and N00014-16-1-25200). We would like to thank Kathryn O'Hara for her help with X-ray scattering data collection. Work at KAUST was funded through the KAUST Competitive Research Grant Program. M.K.R. and J.L.B. acknowledge the KAUST IT Research Computing Team and Supercomputing Laboratory for providing outstanding assistance as well as computational and storage resources.en
dc.publisherRoyal Society of Chemistry (RSC)en
dc.relation.urlhttp://pubs.rsc.org/en/Content/ArticleLanding/2017/TA/C7TA05442D#!divAbstracten
dc.rightsArchived with thanks to J. Mater. Chem. Aen
dc.titleStructural Variations to a Donor Polymer with Low Energy Lossesen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalJ. Mater. Chem. Aen
dc.eprint.versionPost-printen
dc.contributor.institutionCenter for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials Department, University of California, Santa Barbaraen
dc.contributor.institutionJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow Universityen
kaust.authorKumar, Ravva Meheshen
kaust.authorBredas, Jean-Lucen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.