Sparse frequencies data inversion and the role of multi-scattered energy

Handle URI:
http://hdl.handle.net/10754/624914
Title:
Sparse frequencies data inversion and the role of multi-scattered energy
Authors:
Alkhalifah, Tariq Ali ( 0000-0002-9363-9799 )
Abstract:
In trying to extract a broad spectrum of model wavenumbers from the data, necessary to build a plausible model of the Earth, we are, in theory, bounded at the high end by the diffraction resolution limit, which is proportional to the highest usable frequency in the data. At the low end, and courtesy of our multi-dimensional acquisition, the principles behind diffraction tomography theoretically extend our range to zero-wavenumbers, mainly provided by transmissions like diving waves. Within certain regions of the subsurface (i.e. deep), we face the prospective of having a model wavenumber gap in representing the velocity. Here, I demonstrate that inverting for multi scattered energy, we can recover additional wavenumbers not provided by single scattering gradients, that may feed the high and low ends of the model wavenumber spectrum, as well as help us fill in the infamous intermediate wavenumber gap. Thus, I outline a scenario in which we acquire dedicated sparse frequency data, allowing for more time to inject more energy of those frequencies at a reduced cost. Such additional energy is necessary to the recording of more multi-scattered events. The objective of this new paradigm is a high resolution model of the Earth.
KAUST Department:
KAUST
Citation:
Alkhalifah T (2017) Sparse frequencies data inversion and the role of multi-scattered energy. 79th EAGE Conference and Exhibition 2017. Available: http://dx.doi.org/10.3997/2214-4609.201700507.
Publisher:
EAGE Publications BV
Journal:
79th EAGE Conference and Exhibition 2017
Issue Date:
26-May-2017
DOI:
10.3997/2214-4609.201700507
Type:
Conference Paper
Additional Links:
http://www.earthdoc.org/publication/publicationdetails/?publication=88225
Appears in Collections:
Conference Papers

Full metadata record

DC FieldValue Language
dc.contributor.authorAlkhalifah, Tariq Alien
dc.date.accessioned2017-06-12T08:33:42Z-
dc.date.available2017-06-12T08:33:42Z-
dc.date.issued2017-05-26en
dc.identifier.citationAlkhalifah T (2017) Sparse frequencies data inversion and the role of multi-scattered energy. 79th EAGE Conference and Exhibition 2017. Available: http://dx.doi.org/10.3997/2214-4609.201700507.en
dc.identifier.doi10.3997/2214-4609.201700507en
dc.identifier.urihttp://hdl.handle.net/10754/624914-
dc.description.abstractIn trying to extract a broad spectrum of model wavenumbers from the data, necessary to build a plausible model of the Earth, we are, in theory, bounded at the high end by the diffraction resolution limit, which is proportional to the highest usable frequency in the data. At the low end, and courtesy of our multi-dimensional acquisition, the principles behind diffraction tomography theoretically extend our range to zero-wavenumbers, mainly provided by transmissions like diving waves. Within certain regions of the subsurface (i.e. deep), we face the prospective of having a model wavenumber gap in representing the velocity. Here, I demonstrate that inverting for multi scattered energy, we can recover additional wavenumbers not provided by single scattering gradients, that may feed the high and low ends of the model wavenumber spectrum, as well as help us fill in the infamous intermediate wavenumber gap. Thus, I outline a scenario in which we acquire dedicated sparse frequency data, allowing for more time to inject more energy of those frequencies at a reduced cost. Such additional energy is necessary to the recording of more multi-scattered events. The objective of this new paradigm is a high resolution model of the Earth.en
dc.publisherEAGE Publications BVen
dc.relation.urlhttp://www.earthdoc.org/publication/publicationdetails/?publication=88225en
dc.rightsGold Open Accessen
dc.rightsArchived with thanks to 79th EAGE Conference and Exhibition 2017en
dc.titleSparse frequencies data inversion and the role of multi-scattered energyen
dc.typeConference Paperen
dc.contributor.departmentKAUSTen
dc.identifier.journal79th EAGE Conference and Exhibition 2017en
dc.eprint.versionPublisher's Version/PDFen
kaust.authorAlkhalifah, Tariq Alien
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.