A Stochastic Multiscale Method for the Elastic Wave Equations Arising from Fiber Composites

Handle URI:
http://hdl.handle.net/10754/624836
Title:
A Stochastic Multiscale Method for the Elastic Wave Equations Arising from Fiber Composites
Authors:
Babuska, Ivo; Motamed, Mohammad; Tempone, Raul ( 0000-0003-1967-4446 )
Abstract:
We present a stochastic multilevel global-local algorithm [1] for computing elastic waves propagating in fiber-reinforced polymer composites, where the material properties and the size and distribution of fibers in the polymer matrix may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems: 1) macro; 2) meso; and 3) micro problems, corresponding to the three natural length scales: 1) the sizes of plate; 2) the tickles of plies; and 3) and the diameter of fibers. The algorithm uses a homogenized global solution to construct a local approximation that captures the microscale features of the problem. We perform numerical experiments to show the applicability and efficiency of the method.
KAUST Department:
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
Conference/Event name:
Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2016)
Issue Date:
6-Jan-2016
Type:
Poster
Appears in Collections:
Posters; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2016)

Full metadata record

DC FieldValue Language
dc.contributor.authorBabuska, Ivoen
dc.contributor.authorMotamed, Mohammaden
dc.contributor.authorTempone, Raulen
dc.date.accessioned2017-06-08T06:32:29Z-
dc.date.available2017-06-08T06:32:29Z-
dc.date.issued2016-01-06-
dc.identifier.urihttp://hdl.handle.net/10754/624836-
dc.description.abstractWe present a stochastic multilevel global-local algorithm [1] for computing elastic waves propagating in fiber-reinforced polymer composites, where the material properties and the size and distribution of fibers in the polymer matrix may be random. The method aims at approximating statistical moments of some given quantities of interest, such as stresses, in regions of relatively small size, e.g. hot spots or zones that are deemed vulnerable to failure. For a fiber-reinforced cross-plied laminate, we introduce three problems: 1) macro; 2) meso; and 3) micro problems, corresponding to the three natural length scales: 1) the sizes of plate; 2) the tickles of plies; and 3) and the diameter of fibers. The algorithm uses a homogenized global solution to construct a local approximation that captures the microscale features of the problem. We perform numerical experiments to show the applicability and efficiency of the method.en
dc.titleA Stochastic Multiscale Method for the Elastic Wave Equations Arising from Fiber Compositesen
dc.typePosteren
dc.contributor.departmentComputer, Electrical and Mathematical Sciences & Engineering (CEMSE)en
dc.conference.dateJanuary 5-10, 2016en
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2016)en
dc.conference.locationKAUSTen
dc.contributor.institutionUniversity of New Mexicoen
dc.contributor.institutionUniversity of Texas at Austinen
kaust.authorTempone, Raulen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.