Handle URI:
http://hdl.handle.net/10754/624114
Title:
Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow
Authors:
Ghattas, Omar
Abstract:
The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions
Conference/Event name:
Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
Issue Date:
7-Jan-2015
Type:
Presentation
Additional Links:
http://mediasite.kaust.edu.sa/Mediasite/Play/563828f0ab6d4a37a528d63b1beb0ee81d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52
Appears in Collections:
Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

Full metadata record

DC FieldValue Language
dc.contributor.authorGhattas, Omaren
dc.date.accessioned2017-06-05T08:35:49Z-
dc.date.available2017-06-05T08:35:49Z-
dc.date.issued2015-01-07-
dc.identifier.urihttp://hdl.handle.net/10754/624114-
dc.description.abstractThe flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensionsen
dc.relation.urlhttp://mediasite.kaust.edu.sa/Mediasite/Play/563828f0ab6d4a37a528d63b1beb0ee81d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52en
dc.titleBayesian Inversion for Large Scale Antarctic Ice Sheet Flowen
dc.typePresentationen
dc.conference.dateJanuary 6-9, 2015en
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)en
dc.conference.locationKAUSTen
dc.contributor.institutionUniversity of Texasen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.