Handle URI:
http://hdl.handle.net/10754/624105
Title:
Perspectives on Nonlinear Filtering
Authors:
Law, Kody
Abstract:
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
KAUST Department:
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
Conference/Event name:
Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
Issue Date:
7-Jan-2015
Type:
Presentation
Additional Links:
http://mediasite.kaust.edu.sa/Mediasite/Play/d61b5a2ad454433e8c0d5ef5dac384d81d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52
Appears in Collections:
Presentations; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

Full metadata record

DC FieldValue Language
dc.contributor.authorLaw, Kodyen
dc.date.accessioned2017-06-05T08:35:48Z-
dc.date.available2017-06-05T08:35:48Z-
dc.date.issued2015-01-07-
dc.identifier.urihttp://hdl.handle.net/10754/624105-
dc.description.abstractThe solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).en
dc.relation.urlhttp://mediasite.kaust.edu.sa/Mediasite/Play/d61b5a2ad454433e8c0d5ef5dac384d81d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52en
dc.titlePerspectives on Nonlinear Filteringen
dc.typePresentationen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences & Engineering (CEMSE)en
dc.conference.dateJanuary 6-9, 2015en
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)en
dc.conference.locationKAUSTen
kaust.authorLaw, Kodyen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.