Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks

Handle URI:
http://hdl.handle.net/10754/624101
Title:
Free Space Optical (FSO) Communications, Towards the Speeds of Wireline Networks
Authors:
Alouini, Mohamed-Slim ( 0000-0003-4827-1793 )
Abstract:
Rapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.
KAUST Department:
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
Conference/Event name:
Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
Issue Date:
7-Jan-2015
Type:
Presentation
Additional Links:
http://mediasite.kaust.edu.sa/Mediasite/Play/e1a9b97a3fd142a98a5684bc59206c751d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52
Appears in Collections:
Presentations; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

Full metadata record

DC FieldValue Language
dc.contributor.authorAlouini, Mohamed-Slimen
dc.date.accessioned2017-06-05T08:35:48Z-
dc.date.available2017-06-05T08:35:48Z-
dc.date.issued2015-01-07-
dc.identifier.urihttp://hdl.handle.net/10754/624101-
dc.description.abstractRapid increase in the use of wireless services over the last two decades has lead the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. Among the many proposed solutions, optical wireless communication or free-space optical (FSO) systems have gained an increasing interest due to their advantages including higher bandwidth and higher capacity compared to the traditional RF communication systems. This promising technology offers full-duplex Gigabit throughput in certain applications and environment while benefiting from a huge license-free spectrum, immunity to interference, and high security. These features of FSO communication systems potentially enable solving the issues that the RF communication systems face due to the expensive and scarce RF spectrum. The first part of the talk will give an overview of FSO communication systems by offering examples of advantages and application areas of this emerging technology. In the second part of talk, we will focus on some recent results and on-going research directions in the accurate characterization of the performance of FSO systems in the presence of inevitable impairments due to atmospheric turbulence and misalignment between transmitter and receiver.en
dc.relation.urlhttp://mediasite.kaust.edu.sa/Mediasite/Play/e1a9b97a3fd142a98a5684bc59206c751d?catalog=ca65101c-a4eb-4057-9444-45f799bd9c52en
dc.titleFree Space Optical (FSO) Communications, Towards the Speeds of Wireline Networksen
dc.typePresentationen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences & Engineering (CEMSE)en
dc.conference.dateJanuary 6-9, 2015en
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)en
dc.conference.locationKAUSTen
kaust.authorAlouini, Mohamed-Slimen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.