Performance Limits of Energy Harvesting Communications under Imperfect Channel State Information

Handle URI:
http://hdl.handle.net/10754/624081
Title:
Performance Limits of Energy Harvesting Communications under Imperfect Channel State Information
Authors:
Zenaidi, Mohamed Ridah; Rezki, Zouheir; Tembine, Hamidou; Alouini, Mohamed-Slim ( 0000-0003-4827-1793 )
Abstract:
In energy harvesting communications, the transmitters have to adapt transmission to availability of energy harvested during the course of communication. The performance of the transmission depends on the channel conditions which vary randomly due to mobility and environmental changes. In this work, we consider the problem of power allocation taking into account the energy arrivals over time and the degree of channel state information (CSI) available at the transmitter, in order to maximize the throughput. In this work, the CSI at the transmitter is not perfect and may include estimation errors. We solve this problem with respect to the causality and energy storage constraints. We determine the optimal offline policy in the case where the channel is assumed to be perfectly known at the receiver. Different cases of CSI availability are studied for the transmitter. We obtain the power policy when the transmitter has either perfect CSI or no CSI. We also investigate of utmost interest the case of fading channels with imperfect CSI. Furthermore, we analyze the asymptotic average throughput in a system where the average recharge rate goes asymptotically to zero and when it is very high.
KAUST Department:
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
Conference/Event name:
Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
Issue Date:
7-Jan-2015
Type:
Poster
Appears in Collections:
Posters; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

Full metadata record

DC FieldValue Language
dc.contributor.authorZenaidi, Mohamed Ridahen
dc.contributor.authorRezki, Zouheiren
dc.contributor.authorTembine, Hamidouen
dc.contributor.authorAlouini, Mohamed-Slimen
dc.date.accessioned2017-06-05T08:35:47Z-
dc.date.available2017-06-05T08:35:47Z-
dc.date.issued2015-01-07-
dc.identifier.urihttp://hdl.handle.net/10754/624081-
dc.description.abstractIn energy harvesting communications, the transmitters have to adapt transmission to availability of energy harvested during the course of communication. The performance of the transmission depends on the channel conditions which vary randomly due to mobility and environmental changes. In this work, we consider the problem of power allocation taking into account the energy arrivals over time and the degree of channel state information (CSI) available at the transmitter, in order to maximize the throughput. In this work, the CSI at the transmitter is not perfect and may include estimation errors. We solve this problem with respect to the causality and energy storage constraints. We determine the optimal offline policy in the case where the channel is assumed to be perfectly known at the receiver. Different cases of CSI availability are studied for the transmitter. We obtain the power policy when the transmitter has either perfect CSI or no CSI. We also investigate of utmost interest the case of fading channels with imperfect CSI. Furthermore, we analyze the asymptotic average throughput in a system where the average recharge rate goes asymptotically to zero and when it is very high.en
dc.titlePerformance Limits of Energy Harvesting Communications under Imperfect Channel State Informationen
dc.typePosteren
dc.contributor.departmentComputer, Electrical and Mathematical Sciences & Engineering (CEMSE)en
dc.conference.dateJanuary 6-9, 2015en
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)en
dc.conference.locationKAUSTen
dc.contributor.institutionNYU Abu Dhabien
kaust.authorZenaidi, Mohamed Ridahen
kaust.authorRezki, Zouheiren
kaust.authorAlouini, Mohamed-Slimen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.