Handle URI:
http://hdl.handle.net/10754/624074
Title:
The Forward-Reverse Algorithm for Stochastic Reaction Networks
Authors:
Bayer, Christian; Moraes, Alvaro ( 0000-0003-4144-1243 ) ; Tempone, Raul ( 0000-0003-1967-4446 ) ; Vilanova, Pedro ( 0000-0001-6620-6261 )
Abstract:
In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.
KAUST Department:
Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)
Conference/Event name:
Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)
Issue Date:
7-Jan-2015
Type:
Poster
Appears in Collections:
Posters; Conference on Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

Full metadata record

DC FieldValue Language
dc.contributor.authorBayer, Christianen
dc.contributor.authorMoraes, Alvaroen
dc.contributor.authorTempone, Raulen
dc.contributor.authorVilanova, Pedroen
dc.date.accessioned2017-06-05T08:35:47Z-
dc.date.available2017-06-05T08:35:47Z-
dc.date.issued2015-01-07-
dc.identifier.urihttp://hdl.handle.net/10754/624074-
dc.description.abstractIn this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.en
dc.titleThe Forward-Reverse Algorithm for Stochastic Reaction Networksen
dc.typePosteren
dc.contributor.departmentComputer, Electrical and Mathematical Sciences & Engineering (CEMSE)en
dc.conference.dateJanuary 6-9, 2015en
dc.conference.nameAdvances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)en
dc.conference.locationKAUSTen
dc.contributor.institutionWeierstrass Institute for applied analysis and stochasticsen
kaust.authorMoraes, Alvaroen
kaust.authorTempone, Raulen
kaust.authorVilanova, Pedroen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.