Extending the Reach of Big Data Optimization: Randomized Algorithms for Minimizing Relatively Smooth Functions

Handle URI:
http://hdl.handle.net/10754/623944
Title:
Extending the Reach of Big Data Optimization: Randomized Algorithms for Minimizing Relatively Smooth Functions
Authors:
Hanzely, Filip; Richtárik, Peter
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Conference/Event name:
KAUST Research Conference 2017: Visual Computing – Modeling and Reconstruction
Issue Date:
11-Apr-2017
Type:
Poster
Appears in Collections:
Posters; KAUST Research Conference 2017: Visual Computing – Modeling and Reconstruction

Full metadata record

DC FieldValue Language
dc.contributor.authorHanzely, Filipen
dc.contributor.authorRichtárik, Peteren
dc.date.accessioned2017-05-31T11:53:47Z-
dc.date.available2017-05-31T11:53:47Z-
dc.date.issued2017-04-11-
dc.identifier.urihttp://hdl.handle.net/10754/623944-
dc.titleExtending the Reach of Big Data Optimization: Randomized Algorithms for Minimizing Relatively Smooth Functionsen
dc.typePosteren
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.conference.dateApril 10-12, 2017en
dc.conference.nameKAUST Research Conference 2017: Visual Computing – Modeling and Reconstructionen
dc.conference.locationKAUSTen
dc.contributor.institutionUniversity of Edinburghen
kaust.authorHanzely, Filipen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.