Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics

Handle URI:
http://hdl.handle.net/10754/623901
Title:
Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics
Authors:
Kirmani, Ahmad R.; Kiani, Amirreza; Said, Marcel M.; Voznyy, Oleksandr; Wehbe, Nimer; Walters, Grant; Barlow, Stephen; Sargent, Edward H.; Marder, Seth R.; Amassian, Aram ( 0000-0002-5734-1194 )
Abstract:
In recent years colloidal quantum dot (CQD) photovoltaics have developed rapidly because of novel device architectures and robust surface passivation schemes. Achieving controlled net doping remains an important unsolved challenge for this field. Herein we present a general molecular doping platform for CQD solids employing a library of metal–organic complexes. Low effective ionization energy and high electron affinity complexes are shown to produce n- and p-doped CQD solids. We demonstrate the obvious advantage in solar cells by p-doping the CQD absorber layer. Employing photoemission spectroscopy, we identify two doping concentration regimes: lower concentrations lead to efficient doping, while higher concentrations also cause large surface dipoles creating energy barriers to carrier flow. Utilizing the lower concentration regime, we remove midgap electrons leading to 25% enhancement in the power conversion efficiency relative to undoped cells. Given the vast number of available metal–organic complexes, this approach opens new and facile routes to tuning the properties of CQDs for various applications without necessarily resorting to new ligand chemistries.
KAUST Department:
KAUST Solar Center (KSC); Physical Sciences and Engineering (PSE) Division
Citation:
Kirmani AR, Kiani A, Said MM, Voznyy O, Wehbe N, et al. (2016) Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics. ACS Energy Letters 1: 922–930. Available: http://dx.doi.org/10.1021/acsenergylett.6b00429.
Publisher:
American Chemical Society (ACS)
Journal:
ACS Energy Letters
Issue Date:
7-Oct-2016
DOI:
10.1021/acsenergylett.6b00429
Type:
Article
ISSN:
2380-8195; 2380-8195
Sponsors:
The authors thank Yadong Zhang, Karttikay Moudgil, and Raghunath Dasari (Georgia Institute of Technology) for the chemical synthesis of the metal–organic complexes employed in this study; Dr. Omar El Tall of the Analytical Core Laboratory (KAUST) for his assistance with the absorption measurements; and Dr. Yang Yang of the Advanced Nanofabrication, Imaging and Characterization Core Lab (KAUST) for his help with PL measurements. A.R.K. also thanks Prof. Gerasimos Konstantatos, ICFO, Spain for fruitful discussions. The authors acknowledge the use of the D1 beamline at the Cornell High Energy Synchrotron Source supported by the National Science Foundation (NSF DMR-0225180) and NIH-NIGMS. The work at Georgia Institute of Technology was supported by the Office of Naval Research (N00014-14-1-0126) and the National Science Foundation (DMR-1305247).
Additional Links:
http://pubs.acs.org/doi/full/10.1021/acsenergylett.6b00429
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Solar and Photovoltaic Engineering Research Center (SPERC)

Full metadata record

DC FieldValue Language
dc.contributor.authorKirmani, Ahmad R.en
dc.contributor.authorKiani, Amirrezaen
dc.contributor.authorSaid, Marcel M.en
dc.contributor.authorVoznyy, Oleksandren
dc.contributor.authorWehbe, Nimeren
dc.contributor.authorWalters, Granten
dc.contributor.authorBarlow, Stephenen
dc.contributor.authorSargent, Edward H.en
dc.contributor.authorMarder, Seth R.en
dc.contributor.authorAmassian, Aramen
dc.date.accessioned2017-05-31T11:23:12Z-
dc.date.available2017-05-31T11:23:12Z-
dc.date.issued2016-10-07en
dc.identifier.citationKirmani AR, Kiani A, Said MM, Voznyy O, Wehbe N, et al. (2016) Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics. ACS Energy Letters 1: 922–930. Available: http://dx.doi.org/10.1021/acsenergylett.6b00429.en
dc.identifier.issn2380-8195en
dc.identifier.issn2380-8195en
dc.identifier.doi10.1021/acsenergylett.6b00429en
dc.identifier.urihttp://hdl.handle.net/10754/623901-
dc.description.abstractIn recent years colloidal quantum dot (CQD) photovoltaics have developed rapidly because of novel device architectures and robust surface passivation schemes. Achieving controlled net doping remains an important unsolved challenge for this field. Herein we present a general molecular doping platform for CQD solids employing a library of metal–organic complexes. Low effective ionization energy and high electron affinity complexes are shown to produce n- and p-doped CQD solids. We demonstrate the obvious advantage in solar cells by p-doping the CQD absorber layer. Employing photoemission spectroscopy, we identify two doping concentration regimes: lower concentrations lead to efficient doping, while higher concentrations also cause large surface dipoles creating energy barriers to carrier flow. Utilizing the lower concentration regime, we remove midgap electrons leading to 25% enhancement in the power conversion efficiency relative to undoped cells. Given the vast number of available metal–organic complexes, this approach opens new and facile routes to tuning the properties of CQDs for various applications without necessarily resorting to new ligand chemistries.en
dc.description.sponsorshipThe authors thank Yadong Zhang, Karttikay Moudgil, and Raghunath Dasari (Georgia Institute of Technology) for the chemical synthesis of the metal–organic complexes employed in this study; Dr. Omar El Tall of the Analytical Core Laboratory (KAUST) for his assistance with the absorption measurements; and Dr. Yang Yang of the Advanced Nanofabrication, Imaging and Characterization Core Lab (KAUST) for his help with PL measurements. A.R.K. also thanks Prof. Gerasimos Konstantatos, ICFO, Spain for fruitful discussions. The authors acknowledge the use of the D1 beamline at the Cornell High Energy Synchrotron Source supported by the National Science Foundation (NSF DMR-0225180) and NIH-NIGMS. The work at Georgia Institute of Technology was supported by the Office of Naval Research (N00014-14-1-0126) and the National Science Foundation (DMR-1305247).en
dc.publisherAmerican Chemical Society (ACS)en
dc.relation.urlhttp://pubs.acs.org/doi/full/10.1021/acsenergylett.6b00429en
dc.titleRemote Molecular Doping of Colloidal Quantum Dot Photovoltaicsen
dc.typeArticleen
dc.contributor.departmentKAUST Solar Center (KSC)en
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.identifier.journalACS Energy Lettersen
dc.contributor.institutionDepartment of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canadaen
dc.contributor.institutionSchool of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United Statesen
kaust.authorKirmani, Ahmad R.en
kaust.authorWehbe, Nimeren
kaust.authorAmassian, Aramen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.