Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

Handle URI:
http://hdl.handle.net/10754/623872
Title:
Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow
Authors:
Liu, Lulu; Zhang, Wei; Keyes, David E. ( 0000-0002-4052-7224 )
Abstract:
A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.
KAUST Department:
Mechanical Engineering Program; Applied Mathematics and Computational Science Program; Extreme Computing Research Center
Citation:
Liu L, Zhang W, Keyes DE (2017) Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow. Domain Decomposition Methods in Science and Engineering XXIII: 227–235. Available: http://dx.doi.org/10.1007/978-3-319-52389-7_22.
Publisher:
Springer Nature
Journal:
Domain Decomposition Methods in Science and Engineering XXIII
Conference/Event name:
23rd International Conference on Domain Decomposition Methods, DD23
Issue Date:
17-Mar-2017
DOI:
10.1007/978-3-319-52389-7_22
Type:
Conference Paper
ISSN:
1439-7358; 2197-7100
Sponsors:
The authors acknowledge support from KAUST’s Extreme Computing Research Center and the PETSc group of Argonne National Laboratory.
Additional Links:
http://link.springer.com/chapter/10.1007/978-3-319-52389-7_22
Appears in Collections:
Conference Papers; Applied Mathematics and Computational Science Program; Extreme Computing Research Center; Mechanical Engineering Program

Full metadata record

DC FieldValue Language
dc.contributor.authorLiu, Luluen
dc.contributor.authorZhang, Weien
dc.contributor.authorKeyes, David E.en
dc.date.accessioned2017-05-31T11:23:11Z-
dc.date.available2017-05-31T11:23:11Z-
dc.date.issued2017-03-17en
dc.identifier.citationLiu L, Zhang W, Keyes DE (2017) Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow. Domain Decomposition Methods in Science and Engineering XXIII: 227–235. Available: http://dx.doi.org/10.1007/978-3-319-52389-7_22.en
dc.identifier.issn1439-7358en
dc.identifier.issn2197-7100en
dc.identifier.doi10.1007/978-3-319-52389-7_22en
dc.identifier.urihttp://hdl.handle.net/10754/623872-
dc.description.abstractA natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.en
dc.description.sponsorshipThe authors acknowledge support from KAUST’s Extreme Computing Research Center and the PETSc group of Argonne National Laboratory.en
dc.publisherSpringer Natureen
dc.relation.urlhttp://link.springer.com/chapter/10.1007/978-3-319-52389-7_22en
dc.titleNonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flowen
dc.typeConference Paperen
dc.contributor.departmentMechanical Engineering Programen
dc.contributor.departmentApplied Mathematics and Computational Science Programen
dc.contributor.departmentExtreme Computing Research Centeren
dc.identifier.journalDomain Decomposition Methods in Science and Engineering XXIIIen
dc.conference.date2015-07-06 to 2015-07-10en
dc.conference.name23rd International Conference on Domain Decomposition Methods, DD23en
dc.conference.locationJeju Island, KORen
dc.contributor.institutionInstitute of Computational Science, Università della Svizzera italiana (USI), Lugano, Switzerlanden
kaust.authorZhang, Weien
kaust.authorKeyes, David E.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.