Fundamental solutions for Schrödinger operators with general inverse square potentials

Handle URI:
http://hdl.handle.net/10754/623837
Title:
Fundamental solutions for Schrödinger operators with general inverse square potentials
Authors:
Chen, Huyuan; Alhomedan, Suad; Hajaiej, Hichem; Markowich, Peter A. ( 0000-0002-3704-1821 )
Abstract:
In this paper, we clarify the fundamental solutions for Schrödinger operators given as (Formula presented.), where the potential V is a general inverse square potential in (Formula presented.) with (Formula presented.). In particular, letting (Formula presented.),(Formula presented.) where (Formula presented.), we discuss the existence and nonexistence of positive fundamental solutions for Hardy operator (Formula presented.), which depend on the parameter t.
KAUST Department:
Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Chen H, Alhomedan S, Hajaiej H, Markowich P (2017) Fundamental solutions for Schrödinger operators with general inverse square potentials. Applicable Analysis: 1–24. Available: http://dx.doi.org/10.1080/00036811.2017.1286648.
Publisher:
Informa UK Limited
Journal:
Applicable Analysis
Issue Date:
17-Mar-2017
DOI:
10.1080/00036811.2017.1286648
Type:
Article
ISSN:
0003-6811; 1563-504X
Sponsors:
H. Chen is supported by NNSF of China [grant number 11401270], [grant number 11661045]; the Jiangxi Provincial Natural Science Foundation [grant number 20161ACB20007]; SRF for ROCS, SEM from Ministry of Education in China.
Additional Links:
http://www.tandfonline.com/doi/full/10.1080/00036811.2017.1286648
Appears in Collections:
Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorChen, Huyuanen
dc.contributor.authorAlhomedan, Suaden
dc.contributor.authorHajaiej, Hichemen
dc.contributor.authorMarkowich, Peter A.en
dc.date.accessioned2017-05-31T11:23:08Z-
dc.date.available2017-05-31T11:23:08Z-
dc.date.issued2017-03-17en
dc.identifier.citationChen H, Alhomedan S, Hajaiej H, Markowich P (2017) Fundamental solutions for Schrödinger operators with general inverse square potentials. Applicable Analysis: 1–24. Available: http://dx.doi.org/10.1080/00036811.2017.1286648.en
dc.identifier.issn0003-6811en
dc.identifier.issn1563-504Xen
dc.identifier.doi10.1080/00036811.2017.1286648en
dc.identifier.urihttp://hdl.handle.net/10754/623837-
dc.description.abstractIn this paper, we clarify the fundamental solutions for Schrödinger operators given as (Formula presented.), where the potential V is a general inverse square potential in (Formula presented.) with (Formula presented.). In particular, letting (Formula presented.),(Formula presented.) where (Formula presented.), we discuss the existence and nonexistence of positive fundamental solutions for Hardy operator (Formula presented.), which depend on the parameter t.en
dc.description.sponsorshipH. Chen is supported by NNSF of China [grant number 11401270], [grant number 11661045]; the Jiangxi Provincial Natural Science Foundation [grant number 20161ACB20007]; SRF for ROCS, SEM from Ministry of Education in China.en
dc.publisherInforma UK Limiteden
dc.relation.urlhttp://www.tandfonline.com/doi/full/10.1080/00036811.2017.1286648en
dc.subjectInverse square potentialsen
dc.subjectfundamental solutionen
dc.subjectnonexistenceen
dc.titleFundamental solutions for Schrödinger operators with general inverse square potentialsen
dc.typeArticleen
dc.contributor.departmentApplied Mathematics and Computational Science Programen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalApplicable Analysisen
dc.contributor.institutionDepartment of Mathematics, Jiangxi Normal University, Nanchang, P.R. Chinaen
dc.contributor.institutionDepartment of Mathematics, College of Science, King Saud University, Riyadh, Saudi Arabiaen
dc.contributor.institutionNew York University Shanghai, Shanghai, Chinaen
kaust.authorMarkowich, Peter A.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.