Designer interphases for the lithium-oxygen electrochemical cell

Handle URI:
http://hdl.handle.net/10754/623533
Title:
Designer interphases for the lithium-oxygen electrochemical cell
Authors:
Choudhury, Snehashis ( 0000-0002-3483-4295 ) ; Wan, Charles Tai-Chieh ( 0000-0002-9324-202X ) ; Al Sadat, Wajdi I. ( 0000-0002-5503-2179 ) ; Tu, Zhengyuan; Lau, Sampson ( 0000-0002-4214-7444 ) ; Zachman, Michael J. ( 0000-0003-1910-1357 ) ; Kourkoutis, Lena F. ( 0000-0002-1303-1362 ) ; Archer, Lynden A.
Abstract:
An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.
Citation:
Choudhury S, Wan CT-C, Al Sadat WI, Tu Z, Lau S, et al. (2017) Designer interphases for the lithium-oxygen electrochemical cell. Science Advances 3: e1602809. Available: http://dx.doi.org/10.1126/sciadv.1602809.
Publisher:
American Association for the Advancement of Science (AAAS)
Journal:
Science Advances
KAUST Grant Number:
KUS-C1-018-02
Issue Date:
20-Apr-2017
DOI:
10.1126/sciadv.1602809
Type:
Article
ISSN:
2375-2548
Sponsors:
We are grateful to the Advanced Research Projects Agency-Energy (award DE-AR-0000750) for supporting this study. The study made use of the characterization facilities of the King Abdullah University of Science and Technology (KAUST)–Cornell University Center for Energy and Sustainability, which was supported by the KAUST through award number KUS-C1-018-02. Electron microscopy facilities at the Cornell Center for Materials Research, an NSF-supported Materials Research Science and Engineering Center through grant DMR-1120296, were also used for the study. Additional support for the FIB/SEM cryo-stage and transfer system was provided by the Kavli Institute at Cornell and the Energy Materials Center at Cornell and the U.S. Department of Energy, Energy Frontier Research Center, Basic Energy Sciences (DE-SC0001086). M.J.Z. and L.F.K. acknowledge support by the David and Lucile Packard Foundation.
Additional Links:
http://advances.sciencemag.org/content/3/4/e1602809
Appears in Collections:
Publications Acknowledging KAUST Support

Full metadata record

DC FieldValue Language
dc.contributor.authorChoudhury, Snehashisen
dc.contributor.authorWan, Charles Tai-Chiehen
dc.contributor.authorAl Sadat, Wajdi I.en
dc.contributor.authorTu, Zhengyuanen
dc.contributor.authorLau, Sampsonen
dc.contributor.authorZachman, Michael J.en
dc.contributor.authorKourkoutis, Lena F.en
dc.contributor.authorArcher, Lynden A.en
dc.date.accessioned2017-05-15T10:35:07Z-
dc.date.available2017-05-15T10:35:07Z-
dc.date.issued2017-04-20en
dc.identifier.citationChoudhury S, Wan CT-C, Al Sadat WI, Tu Z, Lau S, et al. (2017) Designer interphases for the lithium-oxygen electrochemical cell. Science Advances 3: e1602809. Available: http://dx.doi.org/10.1126/sciadv.1602809.en
dc.identifier.issn2375-2548en
dc.identifier.doi10.1126/sciadv.1602809en
dc.identifier.urihttp://hdl.handle.net/10754/623533-
dc.description.abstractAn electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.en
dc.description.sponsorshipWe are grateful to the Advanced Research Projects Agency-Energy (award DE-AR-0000750) for supporting this study. The study made use of the characterization facilities of the King Abdullah University of Science and Technology (KAUST)–Cornell University Center for Energy and Sustainability, which was supported by the KAUST through award number KUS-C1-018-02. Electron microscopy facilities at the Cornell Center for Materials Research, an NSF-supported Materials Research Science and Engineering Center through grant DMR-1120296, were also used for the study. Additional support for the FIB/SEM cryo-stage and transfer system was provided by the Kavli Institute at Cornell and the Energy Materials Center at Cornell and the U.S. Department of Energy, Energy Frontier Research Center, Basic Energy Sciences (DE-SC0001086). M.J.Z. and L.F.K. acknowledge support by the David and Lucile Packard Foundation.en
dc.publisherAmerican Association for the Advancement of Science (AAAS)en
dc.relation.urlhttp://advances.sciencemag.org/content/3/4/e1602809en
dc.rightsThis is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en
dc.subjectlithium-oxygen cellsen
dc.subjectsolid-electrolyte interphasesen
dc.subjectEnergy storageen
dc.subjectredox mediatorsen
dc.subjecthigh donor number electrolyen
dc.subjectteslithium dendritesen
dc.titleDesigner interphases for the lithium-oxygen electrochemical cellen
dc.typeArticleen
dc.identifier.journalScience Advancesen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionSchool of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USAen
dc.contributor.institutionDepartment of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USAen
dc.contributor.institutionSchool of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USAen
dc.contributor.institutionKavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USAen
kaust.grant.numberKUS-C1-018-02en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.