Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan

Handle URI:
http://hdl.handle.net/10754/623445
Title:
Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan
Authors:
Tran, Luc-Sy ( 0000-0002-0828-7048 ) ; Wang, Zhandong ( 0000-0003-1535-2319 ) ; Carstensen, Hans-Heinrich; Hemken, Christian; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina
Abstract:
The reaction chemistry of furanic fuels, proposed as next-generation bio-derived fuels, has been a target of recent studies. However, quantitative intermediate species profiles at low- to moderate-temperature (LMT) conditions remain scarce. The present paper reports the first systematic full speciation dataset in the temperature range 730–1170 K for three furanic fuels, 2,5-dimethylfuran (DMF), 2-methylfuran (MF), and furan, measured for different equivalence ratios under near-identical LMT conditions in a flow reactor at 1 bar. More than 35 species including reactants, intermediate species, and products were analyzed using electron ionization (EI) molecular-beam mass spectrometry (MBMS). These experimental results provided motivation to extend a previous single joint mechanism for the three furanic fuels, developed for the high-temperature regime in low-pressure premixed flames, to include the LMT oxidation chemistry. A decisive difference of the present mechanism versus all previously reported models is a more complete description of fuel radical reactions for LMT oxidation, obtained from theoretical calculations of thermodynamic properties and rate constants. The experimentally observed differences in fuel conversion behavior and species distribution between the three fuels have been compared to model predictions using the newly extended mechanism. The dependence of fuel conversion on equivalence ratio decreases significantly from DMF to furan, a behavior consistent with the different number of lateral methyl groups in the fuel structure. All three furanic fuels, especially DMF, produce several highly toxic oxygenated species including acrolein, methyl vinyl ketone, furfural, and phenol. These toxic species were found to be products of the primary reactions of these fuels, and these undesirable trends could be explained satisfactorily by the present model, pointing to some caution with regard to the potential emission spectra under LMT conditions.
KAUST Department:
Clean Combustion Research Center
Citation:
Tran L-S, Wang Z, Carstensen H-H, Hemken C, Battin-Leclerc F, et al. (2017) Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combustion and Flame 181: 251–269. Available: http://dx.doi.org/10.1016/j.combustflame.2017.03.030.
Publisher:
Elsevier BV
Journal:
Combustion and Flame
Issue Date:
21-Apr-2017
DOI:
10.1016/j.combustflame.2017.03.030
Type:
Article
ISSN:
0010-2180
Sponsors:
Luc-Sy Tran is grateful to the Alexander von Humboldt (AvH) Foundation for a research fellowship. Zhandong Wang was supported by a fellowship granted by the China Scholarship Council for performing part of his thesis work in Bielefeld. The authors also wish to thank Casimir Togbé, Orléans, France, for his contribution to some of the experiments during his research period in Bielefeld that was supported by the AvH Foundation, as well as Olivier Herbinet, Nancy, France, for his contribution to some of the simulation work. Finally, we would like to acknowledge valuable contributions of Friederike Herrmann, DLR Stuttgart, Germany, to the construction of the reactor and to some experiments while she performed her thesis in Bielefeld.
Additional Links:
http://www.sciencedirect.com/science/article/pii/S0010218017301256
Appears in Collections:
Articles; Clean Combustion Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorTran, Luc-Syen
dc.contributor.authorWang, Zhandongen
dc.contributor.authorCarstensen, Hans-Heinrichen
dc.contributor.authorHemken, Christianen
dc.contributor.authorBattin-Leclerc, Frédériqueen
dc.contributor.authorKohse-Höinghaus, Katharinaen
dc.date.accessioned2017-05-09T12:54:46Z-
dc.date.available2017-05-09T12:54:46Z-
dc.date.issued2017-04-21en
dc.identifier.citationTran L-S, Wang Z, Carstensen H-H, Hemken C, Battin-Leclerc F, et al. (2017) Comparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furan. Combustion and Flame 181: 251–269. Available: http://dx.doi.org/10.1016/j.combustflame.2017.03.030.en
dc.identifier.issn0010-2180en
dc.identifier.doi10.1016/j.combustflame.2017.03.030en
dc.identifier.urihttp://hdl.handle.net/10754/623445-
dc.description.abstractThe reaction chemistry of furanic fuels, proposed as next-generation bio-derived fuels, has been a target of recent studies. However, quantitative intermediate species profiles at low- to moderate-temperature (LMT) conditions remain scarce. The present paper reports the first systematic full speciation dataset in the temperature range 730–1170 K for three furanic fuels, 2,5-dimethylfuran (DMF), 2-methylfuran (MF), and furan, measured for different equivalence ratios under near-identical LMT conditions in a flow reactor at 1 bar. More than 35 species including reactants, intermediate species, and products were analyzed using electron ionization (EI) molecular-beam mass spectrometry (MBMS). These experimental results provided motivation to extend a previous single joint mechanism for the three furanic fuels, developed for the high-temperature regime in low-pressure premixed flames, to include the LMT oxidation chemistry. A decisive difference of the present mechanism versus all previously reported models is a more complete description of fuel radical reactions for LMT oxidation, obtained from theoretical calculations of thermodynamic properties and rate constants. The experimentally observed differences in fuel conversion behavior and species distribution between the three fuels have been compared to model predictions using the newly extended mechanism. The dependence of fuel conversion on equivalence ratio decreases significantly from DMF to furan, a behavior consistent with the different number of lateral methyl groups in the fuel structure. All three furanic fuels, especially DMF, produce several highly toxic oxygenated species including acrolein, methyl vinyl ketone, furfural, and phenol. These toxic species were found to be products of the primary reactions of these fuels, and these undesirable trends could be explained satisfactorily by the present model, pointing to some caution with regard to the potential emission spectra under LMT conditions.en
dc.description.sponsorshipLuc-Sy Tran is grateful to the Alexander von Humboldt (AvH) Foundation for a research fellowship. Zhandong Wang was supported by a fellowship granted by the China Scholarship Council for performing part of his thesis work in Bielefeld. The authors also wish to thank Casimir Togbé, Orléans, France, for his contribution to some of the experiments during his research period in Bielefeld that was supported by the AvH Foundation, as well as Olivier Herbinet, Nancy, France, for his contribution to some of the simulation work. Finally, we would like to acknowledge valuable contributions of Friederike Herrmann, DLR Stuttgart, Germany, to the construction of the reactor and to some experiments while she performed her thesis in Bielefeld.en
dc.publisherElsevier BVen
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0010218017301256en
dc.subjectFuranen
dc.subject2-methylfuranen
dc.subject2,5-dimethylfuranen
dc.subjectFlow reactoren
dc.subjectLow- to moderate-temperature oxidationen
dc.subjectDetailed kinetic modelen
dc.titleComparative experimental and modeling study of the low- to moderate-temperature oxidation chemistry of 2,5-dimethylfuran, 2-methylfuran, and furanen
dc.typeArticleen
dc.contributor.departmentClean Combustion Research Centeren
dc.identifier.journalCombustion and Flameen
dc.contributor.institutionDepartment of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germanyen
dc.contributor.institutionLaboratory for Chemical Technology (LCT), Ghent University, Technologiepark 914, 9052 Ghent, Belgiumen
dc.contributor.institutionLaboratoire Réactions et Génie des Procédés, UMR 7274 CNRS - Université de Lorraine, 1 rue Grandville, 54000 Nancy, Franceen
kaust.authorWang, Zhandongen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.