Capillary pressure across a pore throat in the presence of surfactants

Handle URI:
http://hdl.handle.net/10754/623272
Title:
Capillary pressure across a pore throat in the presence of surfactants
Authors:
Jang, Junbong ( 0000-0001-5500-7558 ) ; Sun, Zhonghao; Santamarina, Carlos ( 0000-0001-8708-2827 )
Abstract:
Capillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.
KAUST Department:
Earth Science and Engineering Program
Citation:
Jang J, Sun Z, Santamarina JC (2016) Capillary pressure across a pore throat in the presence of surfactants. Water Resources Research 52: 9586–9599. Available: http://dx.doi.org/10.1002/2015wr018499.
Publisher:
Wiley-Blackwell
Journal:
Water Resources Research
Issue Date:
22-Nov-2016
DOI:
10.1002/2015wr018499
Type:
Article
ISSN:
0043-1397
Sponsors:
Support for this research was provided by the USA Department of Energy and the KAUST endowment. We are grateful to detailed observations and suggestions by the anonymous reviewers. All data sets generated as part of this study are available from the authors.
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/2015WR018499/abstract
Appears in Collections:
Articles; Earth Science and Engineering Program

Full metadata record

DC FieldValue Language
dc.contributor.authorJang, Junbongen
dc.contributor.authorSun, Zhonghaoen
dc.contributor.authorSantamarina, Carlosen
dc.date.accessioned2017-04-25T05:48:39Z-
dc.date.available2017-04-25T05:48:39Z-
dc.date.issued2016-11-22en
dc.identifier.citationJang J, Sun Z, Santamarina JC (2016) Capillary pressure across a pore throat in the presence of surfactants. Water Resources Research 52: 9586–9599. Available: http://dx.doi.org/10.1002/2015wr018499.en
dc.identifier.issn0043-1397en
dc.identifier.doi10.1002/2015wr018499en
dc.identifier.urihttp://hdl.handle.net/10754/623272-
dc.description.abstractCapillarity controls the distribution and transport of multiphase and immiscible fluids in soils and fractured rocks; therefore, capillarity affects the migration of nonaqueous contaminants and remediation strategies for both LNAPLs and DNAPLs, constrains gas and oil recovery, and regulates CO2 injection and geological storage. Surfactants alter interfacial tension and modify the invasion of pores by immiscible fluids. Experiments are conducted to explore the propagation of fluid interfaces along cylindrical capillary tubes and across pore constrictions in the presence of surfactants. Measured pressure signatures reflect the interaction between surface tension, contact angle, and the pore geometry. Various instabilities occur as the interface traverses the pore constriction, consequently, measured pressure signatures differ from theoretical trends predicted from geometry, lower capillary pressures are generated in advancing wetting fronts, and jumps are prone to under-sampling. Contact angle and instabilities are responsible for pronounced differences between pressure signatures recorded during advancing and receding tests. Pressure signatures gathered with surfactant solutions suggest changes in interfacial tension at the constriction; the transient surface tension is significantly lower than the value measured in quasi-static conditions. Interface stiffening is observed during receding fronts for solutions near the critical micelle concentration. Wetting liquids tend to form plugs at pore constrictions after the invasion of a nonwetting fluid; plugs split the nonwetting fluid into isolated globules and add resistance against fluid flow.en
dc.description.sponsorshipSupport for this research was provided by the USA Department of Energy and the KAUST endowment. We are grateful to detailed observations and suggestions by the anonymous reviewers. All data sets generated as part of this study are available from the authors.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/2015WR018499/abstracten
dc.rightsArchived with thanks to Water Resources Researchen
dc.titleCapillary pressure across a pore throat in the presence of surfactantsen
dc.typeArticleen
dc.contributor.departmentEarth Science and Engineering Programen
dc.identifier.journalWater Resources Researchen
dc.eprint.versionPublisher's Version/PDFen
kaust.authorJang, Junbongen
kaust.authorSun, Zhonghaoen
kaust.authorSantamarina, Carlosen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.