Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires

Handle URI:
http://hdl.handle.net/10754/623170
Title:
Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires
Authors:
Fatieiev, Yevhen ( 0000-0002-2844-8427 ) ; Croissant, Jonas G.; Alamoudi, Kholod ( 0000-0002-7839-4746 ) ; Khashab, Niveen M. ( 0000-0003-2728-0666 )
Abstract:
This work describes the sol-gel syntheses of para-substituted phenylene-bridged periodic mesoporous organosilica (PMO) nanoparticles (NPs) with tunable morphologies ranging from nanowires to nanospheres. The findings show the key role of the addition of organic co-solvents in the aqueous templates on the final morphologies of PMO NPs. Other factors such as the temperature, the stirring speed, and the amount of organic solvents also influence the shape of PMO NPs. The tuning of the shape of the PMO nanomaterials made it possible to study the influence of the particle morphology on the cellular internalization and biocompatibility.
KAUST Department:
Advanced Membranes and Porous Materials Research Center; Smart Hybrid Materials (SHMs) lab
Citation:
Fatieiev Y, Croissant JG, Alamoudi K, Khashab NM (2017) Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem. Available: http://dx.doi.org/10.1002/cplu.201600560.
Publisher:
Wiley-Blackwell
Journal:
ChemPlusChem
Issue Date:
10-Jan-2017
DOI:
10.1002/cplu.201600560
Type:
Article
ISSN:
2192-6506
Sponsors:
We gratefully acknowledge support from King Abdullah University of Science and Technology (KAUST), and NSF Grant DBI-1266377. We thank Haneen Omar for her support in the XRD measurements.
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/cplu.201600560/full
Appears in Collections:
Articles; Advanced Membranes and Porous Materials Research Center; Controlled Release and Delivery Laboratory

Full metadata record

DC FieldValue Language
dc.contributor.authorFatieiev, Yevhenen
dc.contributor.authorCroissant, Jonas G.en
dc.contributor.authorAlamoudi, Kholoden
dc.contributor.authorKhashab, Niveen M.en
dc.date.accessioned2017-04-13T11:50:59Z-
dc.date.available2017-04-13T11:50:59Z-
dc.date.issued2017-01-10en
dc.identifier.citationFatieiev Y, Croissant JG, Alamoudi K, Khashab NM (2017) Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem. Available: http://dx.doi.org/10.1002/cplu.201600560.en
dc.identifier.issn2192-6506en
dc.identifier.doi10.1002/cplu.201600560en
dc.identifier.urihttp://hdl.handle.net/10754/623170-
dc.description.abstractThis work describes the sol-gel syntheses of para-substituted phenylene-bridged periodic mesoporous organosilica (PMO) nanoparticles (NPs) with tunable morphologies ranging from nanowires to nanospheres. The findings show the key role of the addition of organic co-solvents in the aqueous templates on the final morphologies of PMO NPs. Other factors such as the temperature, the stirring speed, and the amount of organic solvents also influence the shape of PMO NPs. The tuning of the shape of the PMO nanomaterials made it possible to study the influence of the particle morphology on the cellular internalization and biocompatibility.en
dc.description.sponsorshipWe gratefully acknowledge support from King Abdullah University of Science and Technology (KAUST), and NSF Grant DBI-1266377. We thank Haneen Omar for her support in the XRD measurements.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/cplu.201600560/fullen
dc.subjectBiocompatibilityen
dc.subjectMesoporous materialsen
dc.subjectNanoparticlesen
dc.subjectOrganosilicaen
dc.subjectSilsesquioxanesen
dc.titleCellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowiresen
dc.typeArticleen
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Centeren
dc.contributor.departmentSmart Hybrid Materials (SHMs) laben
dc.identifier.journalChemPlusChemen
kaust.authorFatieiev, Yevhenen
kaust.authorCroissant, Jonas G.en
kaust.authorAlamoudi, Kholoden
kaust.authorKhashab, Niveen M.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.