Regularity Theory for Mean-Field Game Systems

Handle URI:
http://hdl.handle.net/10754/623049
Title:
Regularity Theory for Mean-Field Game Systems
Authors:
Gomes, Diogo A. ( 0000-0002-3129-3956 ) ; Pimentel, Edgard A.; Voskanyan, Vardan K.
Abstract:
Beginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Gomes, D. A., Pimentel, E. A., & Voskanyan, V. (2016). Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics. doi:10.1007/978-3-319-38934-9
Publisher:
Springer Nature
Journal:
SpringerBriefs in Mathematics
Issue Date:
14-Sep-2016
DOI:
10.1007/978-3-319-38934-9; 10.1007/978-3-319-38934-9_1; 10.1007/978-3-319-38934-9_2; 10.1007/978-3-319-38934-9_3; 10.1007/978-3-319-38934-9_4; 10.1007/978-3-319-38934-9_5; 10.1007/978-3-319-38934-9_6; 10.1007/978-3-319-38934-9_7; 10.1007/978-3-319-38934-9_8; 10.1007/978-3-319-38934-9_9; 10.1007/978-3-319-38934-9_10; 10.1007/978-3-319-38934-9_11
Type:
Book
ISSN:
2191-8198; 2191-8201
ISBN:
978-3-319-38932-5; 978-3-319-38934-9
Additional Links:
http://link.springer.com/book/10.1007%2F978-3-319-38934-9
Appears in Collections:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Books

Full metadata record

DC FieldValue Language
dc.contributor.authorGomes, Diogo A.en
dc.contributor.authorPimentel, Edgard A.en
dc.contributor.authorVoskanyan, Vardan K.en
dc.date.accessioned2017-03-20T12:19:05Z-
dc.date.available2017-03-20T12:19:05Z-
dc.date.issued2016-09-14en
dc.identifier.citationGomes, D. A., Pimentel, E. A., & Voskanyan, V. (2016). Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics. doi:10.1007/978-3-319-38934-9en
dc.identifier.isbn978-3-319-38932-5en
dc.identifier.isbn978-3-319-38934-9en
dc.identifier.issn2191-8198en
dc.identifier.issn2191-8201en
dc.identifier.doi10.1007/978-3-319-38934-9en
dc.identifier.doi10.1007/978-3-319-38934-9_1en
dc.identifier.doi10.1007/978-3-319-38934-9_2en
dc.identifier.doi10.1007/978-3-319-38934-9_3en
dc.identifier.doi10.1007/978-3-319-38934-9_4en
dc.identifier.doi10.1007/978-3-319-38934-9_5en
dc.identifier.doi10.1007/978-3-319-38934-9_6en
dc.identifier.doi10.1007/978-3-319-38934-9_7en
dc.identifier.doi10.1007/978-3-319-38934-9_8en
dc.identifier.doi10.1007/978-3-319-38934-9_9en
dc.identifier.doi10.1007/978-3-319-38934-9_10en
dc.identifier.doi10.1007/978-3-319-38934-9_11en
dc.identifier.urihttp://hdl.handle.net/10754/623049-
dc.description.abstractBeginning with a concise introduction to the theory of mean-field games (MFGs), this book presents the key elements of the regularity theory for MFGs. It then introduces a series of techniques for well-posedness in the context of mean-field problems, including stationary and time-dependent MFGs, subquadratic and superquadratic MFG formulations, and distinct classes of mean-field couplings. It also explores stationary and time-dependent MFGs through a series of a-priori estimates for solutions of the Hamilton-Jacobi and Fokker-Planck equation. It shows sophisticated a-priori systems derived using a range of analytical techniques, and builds on previous results to explain classical solutions. The final chapter discusses the potential applications, models and natural extensions of MFGs. As MFGs connect common problems in pure mathematics, engineering, economics and data management, this book is a valuable resource for researchers and graduate students in these fields.en
dc.publisherSpringer Natureen
dc.relation.urlhttp://link.springer.com/book/10.1007%2F978-3-319-38934-9en
dc.titleRegularity Theory for Mean-Field Game Systemsen
dc.typeBooken
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalSpringerBriefs in Mathematicsen
dc.contributor.institutionDepartment of Mathematics, Universidade Federal de Sao Carlos, São Carlos, Brazilen
kaust.authorGomes, Diogo A.en
kaust.authorVoskanyan, Vardan K.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.