Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

Handle URI:
http://hdl.handle.net/10754/623038
Title:
Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment
Authors:
Röthig, Till ( 0000-0001-6359-8589 ) ; Yum, Lauren ( 0000-0003-2439-561X ) ; Kremb, Stephan Georg; Roik, Anna Krystyna ( 0000-0002-8293-8339 ) ; Voolstra, Christian R. ( 0000-0003-4555-3795 )
Abstract:
Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division; Red Sea Research Center (RSRC)
Citation:
Röthig T, Yum LK, Kremb SG, Roik A, Voolstra CR (2017) Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Scientific Reports 7: 44714. Available: http://dx.doi.org/10.1038/srep44714.
Publisher:
Springer Nature
Journal:
Scientific Reports
KAUST Grant Number:
FCC/1/1973-18-01
Issue Date:
17-Mar-2017
DOI:
10.1038/srep44714
Type:
Article
ISSN:
2045-2322
Sponsors:
We thank the crew of the R/V Aegaeo, especially the ROV and submersible team, and all participating scientists (P. Schmitt-Kopplin, N. Hertkorn, C. Roder). We would like to thank CMOR for assistance and support in field operations. This work was supported from baseline funds to CRV and under the Center Competitive Funding (CCF) Program FCC/1/1973-18-01 by the King Abdullah University of Science and Technology (KAUST).
Additional Links:
http://www.nature.com/articles/srep44714
Appears in Collections:
Articles; Red Sea Research Center (RSRC); Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorRöthig, Tillen
dc.contributor.authorYum, Laurenen
dc.contributor.authorKremb, Stephan Georgen
dc.contributor.authorRoik, Anna Krystynaen
dc.contributor.authorVoolstra, Christian R.en
dc.date.accessioned2017-03-20T08:46:09Z-
dc.date.available2017-03-20T08:46:09Z-
dc.date.issued2017-03-17en
dc.identifier.citationRöthig T, Yum LK, Kremb SG, Roik A, Voolstra CR (2017) Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Scientific Reports 7: 44714. Available: http://dx.doi.org/10.1038/srep44714.en
dc.identifier.issn2045-2322en
dc.identifier.doi10.1038/srep44714en
dc.identifier.urihttp://hdl.handle.net/10754/623038-
dc.description.abstractMicrobes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.en
dc.description.sponsorshipWe thank the crew of the R/V Aegaeo, especially the ROV and submersible team, and all participating scientists (P. Schmitt-Kopplin, N. Hertkorn, C. Roder). We would like to thank CMOR for assistance and support in field operations. This work was supported from baseline funds to CRV and under the Center Competitive Funding (CCF) Program FCC/1/1973-18-01 by the King Abdullah University of Science and Technology (KAUST).en
dc.publisherSpringer Natureen
dc.relation.urlhttp://www.nature.com/articles/srep44714en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.titleMicrobial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environmenten
dc.typeArticleen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.contributor.departmentRed Sea Research Center (RSRC)en
dc.identifier.journalScientific Reportsen
dc.eprint.versionPublisher's Version/PDFen
kaust.authorRöthig, Tillen
kaust.authorYum, Laurenen
kaust.authorKremb, Stephan Georgen
kaust.authorRoik, Anna Krystynaen
kaust.authorVoolstra, Christian R.en
kaust.grant.numberFCC/1/1973-18-01en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.