Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

Handle URI:
http://hdl.handle.net/10754/622910
Title:
Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer
Authors:
Chowdhury, Snehaunshu ( 0000-0002-7003-4076 ) ; Boyette, Wesley; Roberts, William L. ( 0000-0003-1999-2831 )
Abstract:
In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.
KAUST Department:
Clean Combustion Research Center
Citation:
Chowdhury S, Boyette WR, Roberts WL (2017) Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer. Journal of Aerosol Science 106: 56–67. Available: http://dx.doi.org/10.1016/j.jaerosci.2016.10.012.
Publisher:
Elsevier BV
Journal:
Journal of Aerosol Science
Issue Date:
23-Jan-2017
DOI:
10.1016/j.jaerosci.2016.10.012
Type:
Article
ISSN:
0021-8502
Sponsors:
The authors would like to thank Clean Combustion Research Center and King Abdullah University of Science and Technology for funding this work. Email communications with Mr. Torsten Tritscher, of TSI GmbH, Germany, has also been extremely helpful in clearing some of the experimental and conceptual hurdles faced in the usage of the SMPS.
Additional Links:
http://www.sciencedirect.com/science/article/pii/S0021850215300203
Appears in Collections:
Articles; Clean Combustion Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorChowdhury, Snehaunshuen
dc.contributor.authorBoyette, Wesleyen
dc.contributor.authorRoberts, William L.en
dc.date.accessioned2017-02-15T08:32:16Z-
dc.date.available2017-02-15T08:32:16Z-
dc.date.issued2017-01-23en
dc.identifier.citationChowdhury S, Boyette WR, Roberts WL (2017) Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer. Journal of Aerosol Science 106: 56–67. Available: http://dx.doi.org/10.1016/j.jaerosci.2016.10.012.en
dc.identifier.issn0021-8502en
dc.identifier.doi10.1016/j.jaerosci.2016.10.012en
dc.identifier.urihttp://hdl.handle.net/10754/622910-
dc.description.abstractIn this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.en
dc.description.sponsorshipThe authors would like to thank Clean Combustion Research Center and King Abdullah University of Science and Technology for funding this work. Email communications with Mr. Torsten Tritscher, of TSI GmbH, Germany, has also been extremely helpful in clearing some of the experimental and conceptual hurdles faced in the usage of the SMPS.en
dc.publisherElsevier BVen
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S0021850215300203en
dc.subjectTurbulent non-premixed flameen
dc.subjectFlame generated aerosolsen
dc.subjectFlame soot samplingen
dc.subjectSoot nanoparticle size distributionen
dc.subjectSoot probability density functionen
dc.subjectScanning mobility particle sizer (SMPS)en
dc.subjectDifferential mobility analyzer (DMA)en
dc.titleTime-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizeren
dc.typeArticleen
dc.contributor.departmentClean Combustion Research Centeren
dc.identifier.journalJournal of Aerosol Scienceen
kaust.authorChowdhury, Snehaunshuen
kaust.authorBoyette, Wesleyen
kaust.authorRoberts, William L.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.