Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

Handle URI:
http://hdl.handle.net/10754/622873
Title:
Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment
Authors:
Parkes, Stephen; McCabe, Matthew ( 0000-0002-1279-5272 ) ; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali ( 0000-0002-8885-1947 ) ; Williams, Alastair G.; Strauss, Josiah; Element, Adrian
Abstract:
The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study moisture recycling and during extended dry periods with weak moisture recycling may act as a tracer of the relative humidity at the oceanic moisture source.
KAUST Department:
Water Desalination and Reuse Research Center (WDRC)
Citation:
Parkes SD, McCabe MF, Griffiths AD, Wang L, Chambers S, et al. (2017) Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment. Hydrology and Earth System Sciences 21: 533–548. Available: http://dx.doi.org/10.5194/hess-21-533-2017.
Publisher:
Copernicus GmbH
Journal:
Hydrology and Earth System Sciences
Issue Date:
27-Jan-2017
DOI:
10.5194/hess-21-533-2017
Type:
Article
ISSN:
1607-7938
Sponsors:
Stephen Parkes was supported by the Atmospheric Mixing and Pollution Transport (AMPT) project at the Australian Nuclear Science and Technology Organization (ANSTO) and the King Abdullah University of Science and Technology. The Baldry Hydrological Observatory field campaign was supported by Australian Research Council Discovery grants DP0987478 and DP120104718.
Additional Links:
http://www.hydrol-earth-syst-sci.net/21/533/2017/
Appears in Collections:
Articles; Water Desalination and Reuse Research Center (WDRC)

Full metadata record

DC FieldValue Language
dc.contributor.authorParkes, Stephenen
dc.contributor.authorMcCabe, Matthewen
dc.contributor.authorGriffiths, Alan D.en
dc.contributor.authorWang, Lixinen
dc.contributor.authorChambers, Scotten
dc.contributor.authorErshadi, Alien
dc.contributor.authorWilliams, Alastair G.en
dc.contributor.authorStrauss, Josiahen
dc.contributor.authorElement, Adrianen
dc.date.accessioned2017-02-12T13:38:49Z-
dc.date.available2017-02-12T13:38:49Z-
dc.date.issued2017-01-27en
dc.identifier.citationParkes SD, McCabe MF, Griffiths AD, Wang L, Chambers S, et al. (2017) Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment. Hydrology and Earth System Sciences 21: 533–548. Available: http://dx.doi.org/10.5194/hess-21-533-2017.en
dc.identifier.issn1607-7938en
dc.identifier.doi10.5194/hess-21-533-2017en
dc.identifier.urihttp://hdl.handle.net/10754/622873-
dc.description.abstractThe stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study moisture recycling and during extended dry periods with weak moisture recycling may act as a tracer of the relative humidity at the oceanic moisture source.en
dc.description.sponsorshipStephen Parkes was supported by the Atmospheric Mixing and Pollution Transport (AMPT) project at the Australian Nuclear Science and Technology Organization (ANSTO) and the King Abdullah University of Science and Technology. The Baldry Hydrological Observatory field campaign was supported by Australian Research Council Discovery grants DP0987478 and DP120104718.en
dc.publisherCopernicus GmbHen
dc.relation.urlhttp://www.hydrol-earth-syst-sci.net/21/533/2017/en
dc.rightsThis work is distributed under the Creative Commons Attribution 3.0 License.en
dc.titleResponse of water vapour D-excess to land–atmosphere interactions in a semi-arid environmenten
dc.typeArticleen
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)en
dc.identifier.journalHydrology and Earth System Sciencesen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionDepartment of Civil and Environmental Engineering, University of New South Wales, Sydney, Australiaen
dc.contributor.institutionAustralian Nuclear Science and Technology Organization, Sydney, NSW, Australiaen
dc.contributor.institutionDepartment of Earth Sciences, Indiana University, Purdue University Indianapolis (IUPUI), Indianapolis, IN, United Statesen
kaust.authorParkes, Stephenen
kaust.authorMcCabe, Matthewen
kaust.authorErshadi, Alien
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.