Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

Handle URI:
http://hdl.handle.net/10754/622795
Title:
Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution
Authors:
Xia, Chuan ( 0000-0003-4526-159X ) ; Liang, Hanfeng; Zhu, Jiajie ( 0000-0002-1930-7884 ) ; Schwingenschlögl, Udo ( 0000-0003-4179-7231 ) ; Alshareef, Husam N. ( 0000-0001-5029-2142 )
Abstract:
An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.
KAUST Department:
Materials Science and Engineering Program
Citation:
Xia C, Liang H, Zhu J, Schwingenschlögl U, Alshareef HN (2017) Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials: 1602089. Available: http://dx.doi.org/10.1002/aenm.201602089.
Publisher:
Wiley-Blackwell
Journal:
Advanced Energy Materials
Issue Date:
6-Jan-2017
DOI:
10.1002/aenm.201602089
Type:
Article
ISSN:
1614-6832
Sponsors:
Research reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). The authors wish to thank the staff of the Imaging and Characterization Laboratory at KAUST, especially Dr. Chao Zhao for his help with the TEM analysis.
Additional Links:
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602089/full
Appears in Collections:
Articles; Materials Science and Engineering Program

Full metadata record

DC FieldValue Language
dc.contributor.authorXia, Chuanen
dc.contributor.authorLiang, Hanfengen
dc.contributor.authorZhu, Jiajieen
dc.contributor.authorSchwingenschlögl, Udoen
dc.contributor.authorAlshareef, Husam N.en
dc.date.accessioned2017-01-29T13:51:40Z-
dc.date.available2017-01-29T13:51:40Z-
dc.date.issued2017-01-06en
dc.identifier.citationXia C, Liang H, Zhu J, Schwingenschlögl U, Alshareef HN (2017) Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution. Advanced Energy Materials: 1602089. Available: http://dx.doi.org/10.1002/aenm.201602089.en
dc.identifier.issn1614-6832en
dc.identifier.doi10.1002/aenm.201602089en
dc.identifier.urihttp://hdl.handle.net/10754/622795-
dc.description.abstractAn effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.en
dc.description.sponsorshipResearch reported in this publication was supported by King Abdullah University of Science and Technology (KAUST). The authors wish to thank the staff of the Imaging and Characterization Laboratory at KAUST, especially Dr. Chao Zhao for his help with the TEM analysis.en
dc.publisherWiley-Blackwellen
dc.relation.urlhttp://onlinelibrary.wiley.com/doi/10.1002/aenm.201602089/fullen
dc.subjectActive edge siteen
dc.subjectElectrocatalystsen
dc.subjectHydrogen evolutionen
dc.subjectNickel cobalt selenideen
dc.subjectSolid solutionen
dc.titleActive Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolutionen
dc.typeArticleen
dc.contributor.departmentMaterials Science and Engineering Programen
dc.identifier.journalAdvanced Energy Materialsen
kaust.authorXia, Chuanen
kaust.authorLiang, Hanfengen
kaust.authorZhu, Jiajieen
kaust.authorSchwingenschlögl, Udoen
kaust.authorAlshareef, Husam N.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.