Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting

Handle URI:
http://hdl.handle.net/10754/622660
Title:
Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting
Authors:
Liang, Hanfeng; Gandi, Appala; Anjum, Dalaver H.; Wang, Xianbin; Schwingenschlögl, Udo ( 0000-0003-4179-7231 ) ; Alshareef, Husam N. ( 0000-0001-5029-2142 )
Abstract:
Efficient water splitting requires highly active, earth-abundant, and robust catalysts. Monometallic phosphides such as NiP have been shown to be active toward water splitting. Our theoretical analysis has suggested that their performance can be further enhanced by substitution with extrinsic metals, though very little work has been conducted in this area. Here we present for the first time a novel PH plasma-assisted approach to convert NiCo hydroxides into ternary NiCoP. The obtained NiCoP nanostructure supported on Ni foam shows superior catalytic activity toward the hydrogen evolution reaction (HER) with a low overpotential of 32 mV at 10 mA cm in alkaline media. Moreover, it is also capable of catalyzing the oxygen evolution reaction (OER) with high efficiency though the real active sites are surface oxides in situ formed during the catalysis. Specifically, a current density of 10 mA cm is achieved at overpotential of 280 mV. These overpotentials are among the best reported values for non-noble metal catalysts. Most importantly, when used as both the cathode and anode for overall water splitting, a current density of 10 mA cm is achieved at a cell voltage as low as 1.58 V, making NiCoP among the most efficient earth-abundant catalysts for water splitting. Moreover, our new synthetic approach can serve as a versatile route to synthesize various bimetallic or even more complex phosphides for various applications.
KAUST Department:
Materials Science and Engineering Program
Citation:
Liang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, et al. (2016) Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Letters 16: 7718–7725. Available: http://dx.doi.org/10.1021/acs.nanolett.6b03803.
Publisher:
American Chemical Society (ACS)
Journal:
Nano Letters
Issue Date:
9-Nov-2016
DOI:
10.1021/acs.nanolett.6b03803
Type:
Article
ISSN:
1530-6984; 1530-6992
Sponsors:
The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).
Additional Links:
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03803
Appears in Collections:
Articles; Materials Science and Engineering Program

Full metadata record

DC FieldValue Language
dc.contributor.authorLiang, Hanfengen
dc.contributor.authorGandi, Appalaen
dc.contributor.authorAnjum, Dalaver H.en
dc.contributor.authorWang, Xianbinen
dc.contributor.authorSchwingenschlögl, Udoen
dc.contributor.authorAlshareef, Husam N.en
dc.date.accessioned2017-01-09T11:52:21Z-
dc.date.available2017-01-09T11:52:21Z-
dc.date.issued2016-11-09en
dc.identifier.citationLiang H, Gandi AN, Anjum DH, Wang X, Schwingenschlögl U, et al. (2016) Plasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splitting. Nano Letters 16: 7718–7725. Available: http://dx.doi.org/10.1021/acs.nanolett.6b03803.en
dc.identifier.issn1530-6984en
dc.identifier.issn1530-6992en
dc.identifier.doi10.1021/acs.nanolett.6b03803en
dc.identifier.urihttp://hdl.handle.net/10754/622660-
dc.description.abstractEfficient water splitting requires highly active, earth-abundant, and robust catalysts. Monometallic phosphides such as NiP have been shown to be active toward water splitting. Our theoretical analysis has suggested that their performance can be further enhanced by substitution with extrinsic metals, though very little work has been conducted in this area. Here we present for the first time a novel PH plasma-assisted approach to convert NiCo hydroxides into ternary NiCoP. The obtained NiCoP nanostructure supported on Ni foam shows superior catalytic activity toward the hydrogen evolution reaction (HER) with a low overpotential of 32 mV at 10 mA cm in alkaline media. Moreover, it is also capable of catalyzing the oxygen evolution reaction (OER) with high efficiency though the real active sites are surface oxides in situ formed during the catalysis. Specifically, a current density of 10 mA cm is achieved at overpotential of 280 mV. These overpotentials are among the best reported values for non-noble metal catalysts. Most importantly, when used as both the cathode and anode for overall water splitting, a current density of 10 mA cm is achieved at a cell voltage as low as 1.58 V, making NiCoP among the most efficient earth-abundant catalysts for water splitting. Moreover, our new synthetic approach can serve as a versatile route to synthesize various bimetallic or even more complex phosphides for various applications.en
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).en
dc.publisherAmerican Chemical Society (ACS)en
dc.relation.urlhttp://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b03803en
dc.subjectDFTen
dc.subjectelectrocatalysisen
dc.subjectHERen
dc.subjectNiCoPen
dc.subjectOERen
dc.subjectplasma synthesisen
dc.titlePlasma-Assisted Synthesis of NiCoP for Efficient Overall Water Splittingen
dc.typeArticleen
dc.contributor.departmentMaterials Science and Engineering Programen
dc.identifier.journalNano Lettersen
kaust.authorLiang, Hanfengen
kaust.authorGandi, Appalaen
kaust.authorAnjum, Dalaver H.en
kaust.authorWang, Xianbinen
kaust.authorSchwingenschlögl, Udoen
kaust.authorAlshareef, Husam N.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.