Security-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks With Opportunistic User Scheduling

Handle URI:
http://hdl.handle.net/10754/622601
Title:
Security-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks With Opportunistic User Scheduling
Authors:
El-Malek, Ahmed H. Abd; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim ( 0000-0003-4827-1793 )
Abstract:
In this paper, we study the performance of multiuser single-input multiple-output mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic user scheduling. The considered system includes multiple users, one amplify-and-forward relay, one destination, and a multiple-antenna eavesdropper. The users are connected with the relay node through RF links and the relay is connected with the destination through an FSO link. Both maximum ratio combining and selection combining schemes are used at the multiple-antenna relay to combine the signal received from the best user on different antennas. The RF/FSO channels models are assumed to follow Nakagami-m/gamma-gamma fading models with pointing errors. Closed-form expressions are derived for the outage probability, average symbol error probability, and ergodic channel capacity. Then, the power of the selected best user is determined to minimize the system asymptotic outage probability under the dominant RF or FSO link. Then, the considered system secrecy performance is investigated, where the closed-form expressions for the intercept probability are derived. Finally, we propose a new cooperative jamming model in which the worst user is selected by the authorized system to jam the existing eavesdropper. Monte-Carlo simulations are provided to validate the achieved exact and asymptotic results.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Abd El-Malek AH, Salhab AM, Zummo SA, Alouini M-S (2016) Security-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks With Opportunistic User Scheduling. IEEE Transactions on Wireless Communications 15: 5904–5918. Available: http://dx.doi.org/10.1109/TWC.2016.2572681.
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Journal:
IEEE Transactions on Wireless Communications
Issue Date:
24-May-2016
DOI:
10.1109/TWC.2016.2572681
Type:
Article
ISSN:
1536-1276
Sponsors:
This work was funded by the National Plan for Science, Technology and Innovation (Maarifah) - King Abdulaziz City for Science and Technology - through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) - the Kingdom of Saudi Arabia, under grant number 15-ELE4157-04. The authors would like also to acknowledge the KFUPM-KAUST research initiative resulted from this research work.
Additional Links:
http://ieeexplore.ieee.org/document/7478164/
Appears in Collections:
Articles; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorEl-Malek, Ahmed H. Abden
dc.contributor.authorSalhab, Anas M.en
dc.contributor.authorZummo, Salam A.en
dc.contributor.authorAlouini, Mohamed-Slimen
dc.date.accessioned2017-01-02T09:55:32Z-
dc.date.available2017-01-02T09:55:32Z-
dc.date.issued2016-05-24en
dc.identifier.citationAbd El-Malek AH, Salhab AM, Zummo SA, Alouini M-S (2016) Security-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks With Opportunistic User Scheduling. IEEE Transactions on Wireless Communications 15: 5904–5918. Available: http://dx.doi.org/10.1109/TWC.2016.2572681.en
dc.identifier.issn1536-1276en
dc.identifier.doi10.1109/TWC.2016.2572681en
dc.identifier.urihttp://hdl.handle.net/10754/622601-
dc.description.abstractIn this paper, we study the performance of multiuser single-input multiple-output mixed radio frequency (RF)/free space optical (FSO) relay network with opportunistic user scheduling. The considered system includes multiple users, one amplify-and-forward relay, one destination, and a multiple-antenna eavesdropper. The users are connected with the relay node through RF links and the relay is connected with the destination through an FSO link. Both maximum ratio combining and selection combining schemes are used at the multiple-antenna relay to combine the signal received from the best user on different antennas. The RF/FSO channels models are assumed to follow Nakagami-m/gamma-gamma fading models with pointing errors. Closed-form expressions are derived for the outage probability, average symbol error probability, and ergodic channel capacity. Then, the power of the selected best user is determined to minimize the system asymptotic outage probability under the dominant RF or FSO link. Then, the considered system secrecy performance is investigated, where the closed-form expressions for the intercept probability are derived. Finally, we propose a new cooperative jamming model in which the worst user is selected by the authorized system to jam the existing eavesdropper. Monte-Carlo simulations are provided to validate the achieved exact and asymptotic results.en
dc.description.sponsorshipThis work was funded by the National Plan for Science, Technology and Innovation (Maarifah) - King Abdulaziz City for Science and Technology - through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM) - the Kingdom of Saudi Arabia, under grant number 15-ELE4157-04. The authors would like also to acknowledge the KFUPM-KAUST research initiative resulted from this research work.en
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.urlhttp://ieeexplore.ieee.org/document/7478164/en
dc.subjectMixed RF/FSO relay networken
dc.subjectmultiuser diversityen
dc.subjectopportunistic user schedulingen
dc.subjectNakagami-m fadingen
dc.subjectgamma-gamma fadingen
dc.subjectphysical layer securityen
dc.subjectsecurity-reliability trade-offen
dc.subjectcooperative jammingen
dc.subjectpower allocationen
dc.titleSecurity-Reliability Trade-Off Analysis for Multiuser SIMO Mixed RF/FSO Relay Networks With Opportunistic User Schedulingen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalIEEE Transactions on Wireless Communicationsen
dc.contributor.institutionDepartment of Electrical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabiaen
kaust.authorAlouini, Mohamed-Slimen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.