Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system

Handle URI:
http://hdl.handle.net/10754/622232
Title:
Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system
Authors:
Lu, Xuefei; Liang, Liyin L.; Wang, Lixin; Jenerette, G. Darrel; McCabe, Matthew ( 0000-0002-1279-5272 ) ; Grantz, David A.
Abstract:
Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.
KAUST Department:
Biological and Environmental Sciences and Engineering (BESE) Division; Water Desalination and Reuse Research Center (WDRC)
Citation:
Lu X, Liang LL, Wang L, Jenerette GD, McCabe MF, et al. (2017) Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agricultural Water Management 179: 103–109. Available: http://dx.doi.org/10.1016/j.agwat.2016.08.012.
Publisher:
Elsevier BV
Journal:
Agricultural Water Management
Issue Date:
22-Aug-2016
DOI:
10.1016/j.agwat.2016.08.012
Type:
Article
ISSN:
0378-3774
Sponsors:
King Abdullah University of Science and Technology
Appears in Collections:
Articles; Water Desalination and Reuse Research Center (WDRC); Biological and Environmental Sciences and Engineering (BESE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorLu, Xuefeien
dc.contributor.authorLiang, Liyin L.en
dc.contributor.authorWang, Lixinen
dc.contributor.authorJenerette, G. Darrelen
dc.contributor.authorMcCabe, Matthewen
dc.contributor.authorGrantz, David A.en
dc.date.accessioned2017-01-02T08:42:39Z-
dc.date.available2017-01-02T08:42:39Z-
dc.date.issued2016-08-22en
dc.identifier.citationLu X, Liang LL, Wang L, Jenerette GD, McCabe MF, et al. (2017) Partitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production system. Agricultural Water Management 179: 103–109. Available: http://dx.doi.org/10.1016/j.agwat.2016.08.012.en
dc.identifier.issn0378-3774en
dc.identifier.doi10.1016/j.agwat.2016.08.012en
dc.identifier.urihttp://hdl.handle.net/10754/622232-
dc.description.abstractAgricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent irrigated water is transpired by crops relative to being lost through evaporation would improve the management of increasingly limited water resources. In this study, we examined the partitioning of evapotranspiration (ET) over a field of forage sorghum (Sorghum bicolor), which was under evaluation as a potential biofuel feedstock, based on isotope measurements of three irrigation cycles at the vegetative stage. This study employed customized transparent chambers coupled with a laser-based isotope analyzer to continuously measure near-surface variations in the stable isotopic composition of evaporation (E, δ), transpiration (T, δ) and ET (δ) to partition the total water flux. Due to the extreme heat and aridity, δ and δ were very similar, which makes this system highly unusual. Contrary to an expectation that the isotopic signatures of T, E, and ET would become increasingly enriched as soils became drier, our results showed an interesting pattern that δ, δ, and δ increased initially as soil water was depleted following irrigation, but decreased with further soil drying in mid to late irrigation cycle. These changes are likely caused by root water transport from deeper to shallower soil layers. Results indicate that about 46% of the irrigated water delivered to the crop was used as transpiration, with 54% lost as direct evaporation. This implies that 28 − 39% of the total source water was used by the crop, considering the typical 60 − 85% efficiency of flood irrigation. The stable isotope technique provided an effective means of determining surface partitioning of irrigation water in this unusually harsh production environment. The results suggest the potential to further minimize unproductive water losses in these production systems.en
dc.description.sponsorshipKing Abdullah University of Science and Technologyen
dc.publisherElsevier BVen
dc.subjectBiofuelen
dc.subjectClimate changeen
dc.subjectDroughten
dc.subjectEcohydrologyen
dc.subjectEl centroen
dc.subjectImperial valleyen
dc.subjectIrrigationen
dc.subjectWater resourcesen
dc.subjectWater use efficiencyen
dc.titlePartitioning of evapotranspiration using a stable isotope technique in an arid and high temperature agricultural production systemen
dc.typeArticleen
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Divisionen
dc.contributor.departmentWater Desalination and Reuse Research Center (WDRC)en
dc.identifier.journalAgricultural Water Managementen
dc.contributor.institutionDepartment of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, United Statesen
dc.contributor.institutionSchool of Science, University of Waikato, Hamilton, New Zealanden
dc.contributor.institutionDepartment of Botany & Plant Sciences, University of California Riverside, Riverside, CA, 92521, United Statesen
kaust.authorMcCabe, Matthewen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.