Navigating Weighted Regions with Scattered Skinny Tetrahedra

Handle URI:
http://hdl.handle.net/10754/622224
Title:
Navigating Weighted Regions with Scattered Skinny Tetrahedra
Authors:
Cheng, Siu-Wing; Chiu, Man-Kwun; Jin, Jiongxin; Vigneron, Antoine E. ( 0000-0003-3586-3431 )
Abstract:
We propose an algorithm for finding a (1 + ε)-approximate shortest path through a weighted 3D simplicial complex T. The weights are integers from the range [1,W] and the vertices have integral coordinates. Let N be the largest vertex coordinate magnitude, and let n be the number of tetrahedra in T. Let ρ be some arbitrary constant. Let κ be the size of the largest connected component of tetrahedra whose aspect ratios exceed ρ. There exists a constant C dependent on ρ but independent of T such that if κ ≤ 1 C log log n + O(1), the running time of our algorithm is polynomial in n, 1/ε and log(NW). If κ = O(1), the running time reduces to O(nε(log(NW))).
KAUST Department:
Visual Computing Center (VCC)
Citation:
Cheng S-W, Chiu M-K, Jin J, Vigneron A (2015) Navigating Weighted Regions with Scattered Skinny Tetrahedra. Lecture Notes in Computer Science: 35–45. Available: http://dx.doi.org/10.1007/978-3-662-48971-0_4.
Publisher:
Springer Science + Business Media
Journal:
Lecture Notes in Computer Science
Conference/Event name:
26th International Symposium on Algorithms and Computation, ISAAC 2015
Issue Date:
26-Nov-2015
DOI:
10.1007/978-3-662-48971-0_4
Type:
Conference Paper
ISSN:
0302-9743; 1611-3349
Additional Links:
chapter/10.1007/978-3-662-48971-0_4
Appears in Collections:
Conference Papers; Visual Computing Center (VCC)

Full metadata record

DC FieldValue Language
dc.contributor.authorCheng, Siu-Wingen
dc.contributor.authorChiu, Man-Kwunen
dc.contributor.authorJin, Jiongxinen
dc.contributor.authorVigneron, Antoine E.en
dc.date.accessioned2017-01-02T08:42:38Z-
dc.date.available2017-01-02T08:42:38Z-
dc.date.issued2015-11-26en
dc.identifier.citationCheng S-W, Chiu M-K, Jin J, Vigneron A (2015) Navigating Weighted Regions with Scattered Skinny Tetrahedra. Lecture Notes in Computer Science: 35–45. Available: http://dx.doi.org/10.1007/978-3-662-48971-0_4.en
dc.identifier.issn0302-9743en
dc.identifier.issn1611-3349en
dc.identifier.doi10.1007/978-3-662-48971-0_4en
dc.identifier.urihttp://hdl.handle.net/10754/622224-
dc.description.abstractWe propose an algorithm for finding a (1 + ε)-approximate shortest path through a weighted 3D simplicial complex T. The weights are integers from the range [1,W] and the vertices have integral coordinates. Let N be the largest vertex coordinate magnitude, and let n be the number of tetrahedra in T. Let ρ be some arbitrary constant. Let κ be the size of the largest connected component of tetrahedra whose aspect ratios exceed ρ. There exists a constant C dependent on ρ but independent of T such that if κ ≤ 1 C log log n + O(1), the running time of our algorithm is polynomial in n, 1/ε and log(NW). If κ = O(1), the running time reduces to O(nε(log(NW))).en
dc.publisherSpringer Science + Business Mediaen
dc.relation.urlchapter/10.1007/978-3-662-48971-0_4en
dc.subjectApproximation algorithmen
dc.subjectShortest pathen
dc.subjectWeighted regionen
dc.titleNavigating Weighted Regions with Scattered Skinny Tetrahedraen
dc.typeConference Paperen
dc.contributor.departmentVisual Computing Center (VCC)en
dc.identifier.journalLecture Notes in Computer Scienceen
dc.conference.date2015-12-09 to 2015-12-11en
dc.conference.name26th International Symposium on Algorithms and Computation, ISAAC 2015en
dc.conference.locationNagoya, JPNen
dc.contributor.institutionDepartment of Computer Science and Engineering, HKUST, Hong Kongen
dc.contributor.institutionNational Institute of Informatics (NII)Tokyo, Japanen
dc.contributor.institutionJST, ERATO, Kawarabayashi Large Graph ProjectTokyo, Japanen
dc.contributor.institutionGoogle Inc., Seattle, United Statesen
kaust.authorVigneron, Antoine E.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.