Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs

Handle URI:
http://hdl.handle.net/10754/622137
Title:
Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs
Authors:
Nobile, Fabio; Tamellini, Lorenzo; Tempone, Raul ( 0000-0003-1967-4446 )
Abstract:
In this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.
KAUST Department:
Applied Mathematics and Computational Science Program
Citation:
Nobile F, Tamellini L, Tempone R (2015) Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014: 475–482. Available: http://dx.doi.org/10.1007/978-3-319-19800-2_44.
Publisher:
Springer Science + Business Media
Journal:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014
Conference/Event name:
10th International Conference on Spectral and High-Order Methods, ICOSAHOM 2014
Issue Date:
26-Nov-2015
DOI:
10.1007/978-3-319-19800-2_44
Type:
Conference Paper
ISSN:
1439-7358; 2197-7100
Appears in Collections:
Conference Papers; Applied Mathematics and Computational Science Program

Full metadata record

DC FieldValue Language
dc.contributor.authorNobile, Fabioen
dc.contributor.authorTamellini, Lorenzoen
dc.contributor.authorTempone, Raulen
dc.date.accessioned2017-01-02T08:10:20Z-
dc.date.available2017-01-02T08:10:20Z-
dc.date.issued2015-11-26en
dc.identifier.citationNobile F, Tamellini L, Tempone R (2015) Comparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEs. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014: 475–482. Available: http://dx.doi.org/10.1007/978-3-319-19800-2_44.en
dc.identifier.issn1439-7358en
dc.identifier.issn2197-7100en
dc.identifier.doi10.1007/978-3-319-19800-2_44en
dc.identifier.urihttp://hdl.handle.net/10754/622137-
dc.description.abstractIn this work we compare different families of nested quadrature points, i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that both families perform comparably within such framework.en
dc.publisherSpringer Science + Business Mediaen
dc.titleComparison of Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for the Approximation of Random PDEsen
dc.typeConference Paperen
dc.contributor.departmentApplied Mathematics and Computational Science Programen
dc.identifier.journalSpectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014en
dc.conference.date2014-06-23 to 2014-06-27en
dc.conference.name10th International Conference on Spectral and High-Order Methods, ICOSAHOM 2014en
dc.conference.locationSalt Lake City, UT, USAen
dc.contributor.institutionCSQI-MATHICSE, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerlanden
kaust.authorTempone, Raulen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.