Existence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equations

Handle URI:
http://hdl.handle.net/10754/621855
Title:
Existence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equations
Authors:
Bessaih, Hakima; Trabelsi, Saber; Zorgati, Hamdi
Abstract:
We study a modified three-dimensional incompressible anisotropic Navier−Stokes equations. The modification consists in the addition of a power term to the nonlinear convective one. This modification appears naturally in porous media when a fluid obeys the Darcy−Forchheimer law instead of the classical Darcy law. We prove global in time existence and uniqueness of solutions without assuming the smallness condition on the initial data. This improves the result obtained for the classical 3D incompressible anisotropic Navier−Stokes equations.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Bessaih H, Trabelsi S, Zorgati H (2016) Existence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis 50: 1817–1823. Available: http://dx.doi.org/10.1051/m2an/2016008.
Publisher:
EDP Sciences
Journal:
ESAIM: Mathematical Modelling and Numerical Analysis
Issue Date:
27-Jan-2016
DOI:
10.1051/m2an/2016008
Type:
Article
ISSN:
0764-583X; 1290-3841
Additional Links:
http://www.esaim-m2an.org/articles/m2an/abs/2016/06/m2an150156/m2an150156.html
Appears in Collections:
Articles; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorBessaih, Hakimaen
dc.contributor.authorTrabelsi, Saberen
dc.contributor.authorZorgati, Hamdien
dc.date.accessioned2016-11-22T08:50:25Z-
dc.date.available2016-11-22T08:50:25Z-
dc.date.issued2016-01-27en
dc.identifier.citationBessaih H, Trabelsi S, Zorgati H (2016) Existence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis 50: 1817–1823. Available: http://dx.doi.org/10.1051/m2an/2016008.en
dc.identifier.issn0764-583Xen
dc.identifier.issn1290-3841en
dc.identifier.doi10.1051/m2an/2016008en
dc.identifier.urihttp://hdl.handle.net/10754/621855-
dc.description.abstractWe study a modified three-dimensional incompressible anisotropic Navier−Stokes equations. The modification consists in the addition of a power term to the nonlinear convective one. This modification appears naturally in porous media when a fluid obeys the Darcy−Forchheimer law instead of the classical Darcy law. We prove global in time existence and uniqueness of solutions without assuming the smallness condition on the initial data. This improves the result obtained for the classical 3D incompressible anisotropic Navier−Stokes equations.en
dc.publisherEDP Sciencesen
dc.relation.urlhttp://www.esaim-m2an.org/articles/m2an/abs/2016/06/m2an150156/m2an150156.htmlen
dc.rightsThe original publication is available at www.esaim-m2an.orgen
dc.subjectNavier−Stokes equationsen
dc.subjectBrinkman−Forchheimer-extended Darcy modelen
dc.subjectanisotropic viscosityen
dc.titleExistence and uniqueness of global solutions for the modified anisotropic 3D Navier−Stokes equationsen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalESAIM: Mathematical Modelling and Numerical Analysisen
dc.eprint.versionPublisher's Version/PDFen
dc.contributor.institutionUniversity of Wyoming, Department of Mathematics, Dept. 3036, 1000 East University Avenue, Laramie WY 82071, US.en
dc.contributor.institutionDépartement de Mathématiques, Campus Universitaire, Université Tunis El Manar 2092, Tunisia.en
kaust.authorTrabelsi, Saberen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.