Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations

Handle URI:
http://hdl.handle.net/10754/621702
Title:
Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations
Authors:
Vummaleti, Sai V. C. ( 0000-0001-7276-2475 ) ; Al-Ghamdi, Miasser ( 0000-0002-7192-4660 ) ; Poater, Albert; Falivene, Laura ( 0000-0003-1509-6191 ) ; Scaranto, Jessica; Beetstra, Dirk J.; Morton, Jason G.; Cavallo, Luigi ( 0000-0002-1398-338X )
Abstract:
Density functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.
KAUST Department:
KAUST Catalysis Center (KCC); Physical Sciences and Engineering (PSE) Division; SABIC - Corporate Research and Innovation Center (CRI) at KAUST
Citation:
Vummaleti SVC, Al-Ghamdi M, Poater A, Falivene L, Scaranto J, et al. (2015) Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations. Organometallics 34: 5549–5554. Available: http://dx.doi.org/10.1021/acs.organomet.5b00749.
Publisher:
American Chemical Society (ACS)
Journal:
Organometallics
Issue Date:
13-Nov-2015
DOI:
10.1021/acs.organomet.5b00749
Type:
Article
ISSN:
0276-7333; 1520-6041
Sponsors:
European Commission[CIG09-GA-2011-293900]; Ministerio de Economía y Competitividad[CTQ2014-59832-JIN]; King Abdullah University of Science and Technology
Additional Links:
http://pubs.acs.org/doi/abs/10.1021/acs.organomet.5b00749
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; KAUST Catalysis Center (KCC)

Full metadata record

DC FieldValue Language
dc.contributor.authorVummaleti, Sai V. C.en
dc.contributor.authorAl-Ghamdi, Miasseren
dc.contributor.authorPoater, Alberten
dc.contributor.authorFalivene, Lauraen
dc.contributor.authorScaranto, Jessicaen
dc.contributor.authorBeetstra, Dirk J.en
dc.contributor.authorMorton, Jason G.en
dc.contributor.authorCavallo, Luigien
dc.date.accessioned2016-11-03T13:23:06Z-
dc.date.available2016-11-03T13:23:06Z-
dc.date.issued2015-11-13en
dc.identifier.citationVummaleti SVC, Al-Ghamdi M, Poater A, Falivene L, Scaranto J, et al. (2015) Mechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizations. Organometallics 34: 5549–5554. Available: http://dx.doi.org/10.1021/acs.organomet.5b00749.en
dc.identifier.issn0276-7333en
dc.identifier.issn1520-6041en
dc.identifier.doi10.1021/acs.organomet.5b00749en
dc.identifier.urihttp://hdl.handle.net/10754/621702-
dc.description.abstractDensity functional theory calculations have been used to investigate the reaction mechanism for the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-bis(diphenylphosphino)propane) and [Pd]/BPh3 dual catalytic system assisted intramolecular alkoxycyanation ([Pd] = Pd-Xantphos) using acylated and cyanated 2-allylphenol derivatives as substrates, respectively. Our results substantially confirm the proposed mechanism for both [Rh]- and [Pd]/ BPh3-mediated alkoxyfunctionalizations, offering a detailed geometrical and energetical understanding of all the elementary steps. Furthermore, for the [Rh]-mediated alkoxyacylation, our observations support the hypothesis that the quinoline group of the substrate is crucial to stabilize the acyl metal complex and prevent further decarbonylation. For [Pd]/BPh3-catalyzed alkoxycyanation, our findings clarify how the Lewis acid BPh3 cocatalyst accelerates the only slow step of the reaction, corresponding to the oxidative addition of the cyanate O-CN bond to the Pd center. © 2015 American Chemical Society.en
dc.description.sponsorshipEuropean Commission[CIG09-GA-2011-293900]en
dc.description.sponsorshipMinisterio de Economía y Competitividad[CTQ2014-59832-JIN]en
dc.description.sponsorshipKing Abdullah University of Science and Technologyen
dc.publisherAmerican Chemical Society (ACS)en
dc.relation.urlhttp://pubs.acs.org/doi/abs/10.1021/acs.organomet.5b00749en
dc.titleMechanism of Intramolecular Rhodium- and Palladium-Catalyzed Alkene Alkoxyfunctionalizationsen
dc.typeArticleen
dc.contributor.departmentKAUST Catalysis Center (KCC)en
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentSABIC - Corporate Research and Innovation Center (CRI) at KAUSTen
dc.identifier.journalOrganometallicsen
dc.contributor.institutionInstitut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Campus Montilivi, Girona, Catalonia, Spainen
kaust.authorVummaleti, Sai V. C.en
kaust.authorAl-Ghamdi, Miasseren
kaust.authorFalivene, Lauraen
kaust.authorScaranto, Jessicaen
kaust.authorBeetstra, Dirk J.en
kaust.authorMorton, Jason G.en
kaust.authorCavallo, Luigien
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.