Crown sealing and buckling instability during water entry of spheres

Handle URI:
http://hdl.handle.net/10754/621599
Title:
Crown sealing and buckling instability during water entry of spheres
Authors:
Marston, J. O.; Truscott, T. T. ( 0000-0003-1613-6052 ) ; Speirs, N. B.; Mansoor, Mohammad M. ( 0000-0001-9196-0960 ) ; Thoroddsen, Sigurdur T. ( 0000-0001-6997-4311 )
Abstract:
We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.
KAUST Department:
Physical Sciences and Engineering (PSE) Division; Clean Combustion Research Center
Citation:
Marston JO, Truscott TT, Speirs NB, Mansoor MM, Thoroddsen ST (2016) Crown sealing and buckling instability during water entry of spheres. Journal of Fluid Mechanics 794: 506–529. Available: http://dx.doi.org/10.1017/jfm.2016.165.
Publisher:
Cambridge University Press (CUP)
Journal:
Journal of Fluid Mechanics
Issue Date:
5-Apr-2016
DOI:
10.1017/jfm.2016.165
Type:
Article
ISSN:
0022-1120; 1469-7645
Sponsors:
The experimental work was started whilst T.T.T. and J.O.M. were visiting researchers at KAUST. Funding from KAUST Office of Competitive Research Funds is gratefully acknowledged. We thank Y. Li for help in obtaining the enlarged image in figure 1(g).
Appears in Collections:
Articles; Physical Sciences and Engineering (PSE) Division; Clean Combustion Research Center

Full metadata record

DC FieldValue Language
dc.contributor.authorMarston, J. O.en
dc.contributor.authorTruscott, T. T.en
dc.contributor.authorSpeirs, N. B.en
dc.contributor.authorMansoor, Mohammad M.en
dc.contributor.authorThoroddsen, Sigurdur T.en
dc.date.accessioned2016-11-03T08:33:01Z-
dc.date.available2016-11-03T08:33:01Z-
dc.date.issued2016-04-05en
dc.identifier.citationMarston JO, Truscott TT, Speirs NB, Mansoor MM, Thoroddsen ST (2016) Crown sealing and buckling instability during water entry of spheres. Journal of Fluid Mechanics 794: 506–529. Available: http://dx.doi.org/10.1017/jfm.2016.165.en
dc.identifier.issn0022-1120en
dc.identifier.issn1469-7645en
dc.identifier.doi10.1017/jfm.2016.165en
dc.identifier.urihttp://hdl.handle.net/10754/621599-
dc.description.abstractWe present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.en
dc.description.sponsorshipThe experimental work was started whilst T.T.T. and J.O.M. were visiting researchers at KAUST. Funding from KAUST Office of Competitive Research Funds is gratefully acknowledged. We thank Y. Li for help in obtaining the enlarged image in figure 1(g).en
dc.publisherCambridge University Press (CUP)en
dc.subjectcontact linesen
dc.subjectinterfacial flows (free surface)en
dc.subjectthin filmsen
dc.titleCrown sealing and buckling instability during water entry of spheresen
dc.typeArticleen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
dc.contributor.departmentClean Combustion Research Centeren
dc.identifier.journalJournal of Fluid Mechanicsen
dc.contributor.institutionDepartment of Chemical Engineering, Texas Tech University, Lubbock, TX, United Statesen
dc.contributor.institutionDepartment of Mechanical and Aerospace Engineering, Utah State University, Logan, UT, United Statesen
kaust.authorMansoor, Mohammad M.en
kaust.authorThoroddsen, Sigurdur T.en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.