Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity

Handle URI:
http://hdl.handle.net/10754/621503
Title:
Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity
Authors:
Cho, Yonggeun; Fall, Mouhamed M.; Hajaiej, Hichem; Markowich, Peter A. ( 0000-0002-3704-1821 ) ; Trabelsi, Saber
Abstract:
This paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Company
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Cho Y, Fall MM, Hajaiej H, Markowich PA, Trabelsi S (2016) Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity. Analysis and Applications: 1–31. Available: http://dx.doi.org/10.1142/S0219530516500056.
Publisher:
World Scientific Pub Co Pte Lt
Journal:
Analysis and Applications
Issue Date:
4-May-2016
DOI:
10.1142/S0219530516500056
Type:
Article
ISSN:
0219-5305; 1793-6861
Appears in Collections:
Articles; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorCho, Yonggeunen
dc.contributor.authorFall, Mouhamed M.en
dc.contributor.authorHajaiej, Hichemen
dc.contributor.authorMarkowich, Peter A.en
dc.contributor.authorTrabelsi, Saberen
dc.date.accessioned2016-11-03T08:30:55Z-
dc.date.available2016-11-03T08:30:55Z-
dc.date.issued2016-05-04en
dc.identifier.citationCho Y, Fall MM, Hajaiej H, Markowich PA, Trabelsi S (2016) Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity. Analysis and Applications: 1–31. Available: http://dx.doi.org/10.1142/S0219530516500056.en
dc.identifier.issn0219-5305en
dc.identifier.issn1793-6861en
dc.identifier.doi10.1142/S0219530516500056en
dc.identifier.urihttp://hdl.handle.net/10754/621503-
dc.description.abstractThis paper is devoted to the mathematical analysis of a class of nonlinear fractional Schrödinger equations with a general Hartree-type integrand. We show the well-posedness of the associated Cauchy problem and prove the existence and stability of standing waves under suitable assumptions on the nonlinearity. Our proofs rely on a contraction argument in mixed functional spaces and the concentration-compactness method. © 2015 World Scientific Publishing Companyen
dc.publisherWorld Scientific Pub Co Pte Lten
dc.subjectfractional PDEsen
dc.titleOrbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearityen
dc.typeArticleen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journalAnalysis and Applicationsen
dc.contributor.institutionDepartment of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756, South Koreaen
dc.contributor.institutionAfrican Institute for Mathematical Sciences of Senegal, AIMS-Senegal, KM 2, Route de Joal, B.P. 14 18. Mbour, Sénégalen
dc.contributor.institutionInstitute of Mathematical Sciences, New York University Shanghai, Shanghai 200120, P. R. Chinaen
kaust.authorMarkowich, Peter A.en
kaust.authorTrabelsi, Saberen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.