Transient analysis of plasmonic nanostructures using an MOT-PMCHWT solver

Handle URI:
http://hdl.handle.net/10754/621339
Title:
Transient analysis of plasmonic nanostructures using an MOT-PMCHWT solver
Authors:
Uysal, Ismail Enes ( 0000-0003-4053-769X ) ; Ulku, Huseyin Arda ( 0000-0003-4682-3902 ) ; Bagci, Hakan ( 0000-0003-3867-5786 )
Abstract:
A marching on in time (MOT) scheme for solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation on plasmonic nanostructures is described. The proposed scheme calls for temporal convolutions of the permittivity and Green function of the plasmonic medium with the temporal basis function. Time domain samples of the permittivity and the Green function required by these convolutions are computed using a fast relaxed vector fitting (FRVF) algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver.
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Citation:
Uysal IE, Ulku HA, Bagci H (2015) Transient analysis of plasmonic nanostructures using an MOT-PMCHWT solver. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Available: http://dx.doi.org/10.1109/APS.2015.7305143.
Publisher:
Institute of Electrical and Electronics Engineers (IEEE)
Journal:
2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
Conference/Event name:
IEEE Antennas and Propagation Society International Symposium, APS 2015
Issue Date:
26-Oct-2015
DOI:
10.1109/APS.2015.7305143
Type:
Conference Paper
Appears in Collections:
Conference Papers; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.authorUysal, Ismail Enesen
dc.contributor.authorUlku, Huseyin Ardaen
dc.contributor.authorBagci, Hakanen
dc.date.accessioned2016-11-03T06:58:01Z-
dc.date.available2016-11-03T06:58:01Z-
dc.date.issued2015-10-26en
dc.identifier.citationUysal IE, Ulku HA, Bagci H (2015) Transient analysis of plasmonic nanostructures using an MOT-PMCHWT solver. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Available: http://dx.doi.org/10.1109/APS.2015.7305143.en
dc.identifier.doi10.1109/APS.2015.7305143en
dc.identifier.urihttp://hdl.handle.net/10754/621339-
dc.description.abstractA marching on in time (MOT) scheme for solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation on plasmonic nanostructures is described. The proposed scheme calls for temporal convolutions of the permittivity and Green function of the plasmonic medium with the temporal basis function. Time domain samples of the permittivity and the Green function required by these convolutions are computed using a fast relaxed vector fitting (FRVF) algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver.en
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.subjectFrequency-domain analysisen
dc.subjectGreen's function methodsen
dc.subjectIntegral equationsen
dc.subjectNanostructuresen
dc.subjectPermittivityen
dc.subjectPlasmonsen
dc.subjectTime-domain analysisen
dc.titleTransient analysis of plasmonic nanostructures using an MOT-PMCHWT solveren
dc.typeConference Paperen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.identifier.journal2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meetingen
dc.conference.date19 July 2015 through 24 July 2015en
dc.conference.nameIEEE Antennas and Propagation Society International Symposium, APS 2015en
dc.contributor.institutionDepartment of Electronics Engineering, Gebze Institute of Technology, Kocaeli, Turkeyen
kaust.authorUysal, Ismail Enesen
kaust.authorUlku, Huseyin Ardaen
kaust.authorBagci, Hakanen
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.