On the Performance of In-Band Full-Duplex Cooperative Communications

Handle URI:
http://hdl.handle.net/10754/617879
Title:
On the Performance of In-Band Full-Duplex Cooperative Communications
Authors:
Khafagy, Mohammad Galal ( 0000-0001-7578-9702 )
Abstract:
In-band full-duplex, by which radios may simultaneously transmit and receive over the same channel, has been always considered practically-unfeasible due to the prohibitively strong self-interference. Indeed, a freshly-generated transmit signal power is typically ten orders of magnitude higher than that of a naturally-attenuated received signal. While unable to manage such an overwhelming interference, wireless communications resorted to half-duplex operation, transmitting and receiving over orthogonal channel resources. Recent research has demonstrated the practical feasibility of full-duplexing via successive sophisticated stages of signal suppression/cancellation, bringing this long-held assumption down and reviving the promising full-duplex potentials. Full-duplex relaying (FDR), where intermediate nodes may now support source-destination communication via simultaneous listening/forwarding, represents one of two full-duplex settings currently recommended for deployment in future fifth-generation (5G) systems. Theoretically, it has been widely accepted that FDR potentially doubles the channel capacity when compared to its half-duplex counterpart. Although FDR doubles the multiplexing gain, the effective signal-to-noise ratio (SNR) can be significantly degraded due to the residual self-interference (RSI) if not properly handled. In this work, efficient protocols are devised for different FDR settings. Selective cooperation is proposed for the canonical three-terminal FDR channel with RSI, which exploits the cooperative diversity offered by the independently fading source/relay message replicas arriving at the destination. Closed-form expressions are derived for the end-to-end SNR cumulative distribution function (CDF) under Rayleigh and Nakagami-m fading. Further, the offered diversity gain is presented as a function of the RSI scaling trend with the relay power. We show that the existing diversity problem in simple FDR protocols can be considerably fixed via block transmission with selective cooperation. Beyond the single-relay setting, the outage performance of different opportunistic full-duplex relay selection (FDRS) protocols is also evaluated under Rayleigh and Nakagami-m fading. It is shown that, with state-of-the-art adaptive self-interference cancellation techniques, FDRS can offer the same diversity order of its half-duplex rival while supporting a higher level of spectral efficiency. FDRS is also analyzed when adopted by a spectrum-sharing secondary system while the primary spectrum user imposes an additional interference constraint. Finally, buffer-aided hybrid half-/full-duplex cooperation is addressed. To maximize the end-to-end throughput, joint duplexing mode and link selection is studied where the system leverages the buffer and outage state information at the transmitters. All theoretic findings are corroborated with numerical simulations, with comparisons to existing protocols.
Advisors:
Alouini, Mohamed-Slim ( 0000-0003-4827-1793 )
Committee Member:
Salem, Ahmed Kamal Sultan; Shamma, Jeff S. ( 0000-0001-5638-9551 ) ; Shihada, Basem ( 0000-0003-4434-4334 ) ; Li, Geoffrey Ye
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Program:
Electrical Engineering
Issue Date:
Jun-2016
Type:
Dissertation
Appears in Collections:
Dissertations

Full metadata record

DC FieldValue Language
dc.contributor.advisorAlouini, Mohamed-Slimen
dc.contributor.authorKhafagy, Mohammad Galalen
dc.date.accessioned2016-08-03T12:25:29Z-
dc.date.available2016-08-03T12:25:29Z-
dc.date.issued2016-06-
dc.identifier.urihttp://hdl.handle.net/10754/617879-
dc.description.abstractIn-band full-duplex, by which radios may simultaneously transmit and receive over the same channel, has been always considered practically-unfeasible due to the prohibitively strong self-interference. Indeed, a freshly-generated transmit signal power is typically ten orders of magnitude higher than that of a naturally-attenuated received signal. While unable to manage such an overwhelming interference, wireless communications resorted to half-duplex operation, transmitting and receiving over orthogonal channel resources. Recent research has demonstrated the practical feasibility of full-duplexing via successive sophisticated stages of signal suppression/cancellation, bringing this long-held assumption down and reviving the promising full-duplex potentials. Full-duplex relaying (FDR), where intermediate nodes may now support source-destination communication via simultaneous listening/forwarding, represents one of two full-duplex settings currently recommended for deployment in future fifth-generation (5G) systems. Theoretically, it has been widely accepted that FDR potentially doubles the channel capacity when compared to its half-duplex counterpart. Although FDR doubles the multiplexing gain, the effective signal-to-noise ratio (SNR) can be significantly degraded due to the residual self-interference (RSI) if not properly handled. In this work, efficient protocols are devised for different FDR settings. Selective cooperation is proposed for the canonical three-terminal FDR channel with RSI, which exploits the cooperative diversity offered by the independently fading source/relay message replicas arriving at the destination. Closed-form expressions are derived for the end-to-end SNR cumulative distribution function (CDF) under Rayleigh and Nakagami-m fading. Further, the offered diversity gain is presented as a function of the RSI scaling trend with the relay power. We show that the existing diversity problem in simple FDR protocols can be considerably fixed via block transmission with selective cooperation. Beyond the single-relay setting, the outage performance of different opportunistic full-duplex relay selection (FDRS) protocols is also evaluated under Rayleigh and Nakagami-m fading. It is shown that, with state-of-the-art adaptive self-interference cancellation techniques, FDRS can offer the same diversity order of its half-duplex rival while supporting a higher level of spectral efficiency. FDRS is also analyzed when adopted by a spectrum-sharing secondary system while the primary spectrum user imposes an additional interference constraint. Finally, buffer-aided hybrid half-/full-duplex cooperation is addressed. To maximize the end-to-end throughput, joint duplexing mode and link selection is studied where the system leverages the buffer and outage state information at the transmitters. All theoretic findings are corroborated with numerical simulations, with comparisons to existing protocols.en
dc.language.isoenen
dc.subjectFull-Duplexen
dc.subjectSelective Cooperationen
dc.subjectRelay selectionen
dc.subjectBuffer-aided relayingen
dc.subjectPerformance Analysisen
dc.titleOn the Performance of In-Band Full-Duplex Cooperative Communicationsen
dc.typeDissertationen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberSalem, Ahmed Kamal Sultanen
dc.contributor.committeememberShamma, Jeff S.en
dc.contributor.committeememberShihada, Basemen
dc.contributor.committeememberLi, Geoffrey Yeen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.nameDoctor of Philosophyen
dc.person.id118517en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.