Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments

Handle URI:
http://hdl.handle.net/10754/613319
Title:
Catalysis by Design Using Surface Organometallic Nitrogen-Containing Fragments
Authors:
Hamzaoui, Bilel ( 0000-0003-4779-9326 )
Abstract:
The aim of this thesis is to explore the chemistry of well-defined silica-supported group 4 and group 5 complexes that contain one or more multiply-bonded nitrogen atoms. Such species have been recognized as crucial intermediates in many catalytic reactions (e.g. hydroaminoalkylation, olefin hydrogenation, imine metathesis…). The first chapter provided a bibliographic overview of the preparation and the reactivity of group 4 and 5 complexes towards hydroaminoalkylation and imine metathesis catalysis. The second chapter deals with the isolation and the characterization of a series of well-defined group 4 ƞ2-imine complexes surfaces species. 2D solid-state NMR (1H–13C HETCOR, Multiple Quantum) experiments have revealed consistently a unique structural rearrangement, viz azametallacycle occurring on the immobilized metal-amido ligands. Hydrogenolysis of the sole Zr-C bond in such species gives selectively a silica-supported zirconium monohydride that can perform the catalytic hydrogenation of olefins. The third chapter examines the mechanistic studies of the intermolecular hydroaminoalkylation using SOMC to identify the key metallacyclic surface intermediates (silica-supported three-membred and five-membered). The catalyst was regenerated by protonolysis and afforded pure amine. Catalytic testing of a selection of amine compounds with variable electronic properties was carried out. The fourth chapter deals with the generation and the characterization of well-defined silica-supported zirconium-imido complexes. The resulting species effectively catalyzes imine/imine cross-metathesis and thus considered as the first heterogeneous catalysts active for imine metathesis reaction. The fifth chapter studies the reaction of SBA15.1100 ºC with dry aniline and derivatives leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. The efficiency of this methodology is strongly supported and unambiguously highlighted by strong solid state characterizations: FT-IR, 1D and 2D solid state NMR spectroscopy and even dynamic nuclear polarization enhanced 29Si and 15N, XRD and TEM… Importantly, a plethora of well-organized bifunctional catalysts with different electronic properties were successfully synthesied and tested in the Knoevenagel condensation.
Advisors:
Basset, Jean-Marie ( 0000-0003-3166-8882 )
Committee Member:
Takanabe, Kazuhiro ( 0000-0001-5374-9451 ) ; Sarathy, Mani ( 0000-0002-3975-6206 ) ; Astruc, Didier
KAUST Department:
Physical Sciences and Engineering (PSE) Division
Program:
Chemical Sciences
Issue Date:
14-Jun-2016
Type:
Dissertation
Appears in Collections:
Dissertations

Full metadata record

DC FieldValue Language
dc.contributor.advisorBasset, Jean-Marieen
dc.contributor.authorHamzaoui, Bilelen
dc.date.accessioned2016-06-16T09:25:57Z-
dc.date.available2016-06-16T09:25:57Z-
dc.date.issued2016-06-14-
dc.identifier.urihttp://hdl.handle.net/10754/613319-
dc.description.abstractThe aim of this thesis is to explore the chemistry of well-defined silica-supported group 4 and group 5 complexes that contain one or more multiply-bonded nitrogen atoms. Such species have been recognized as crucial intermediates in many catalytic reactions (e.g. hydroaminoalkylation, olefin hydrogenation, imine metathesis…). The first chapter provided a bibliographic overview of the preparation and the reactivity of group 4 and 5 complexes towards hydroaminoalkylation and imine metathesis catalysis. The second chapter deals with the isolation and the characterization of a series of well-defined group 4 ƞ2-imine complexes surfaces species. 2D solid-state NMR (1H–13C HETCOR, Multiple Quantum) experiments have revealed consistently a unique structural rearrangement, viz azametallacycle occurring on the immobilized metal-amido ligands. Hydrogenolysis of the sole Zr-C bond in such species gives selectively a silica-supported zirconium monohydride that can perform the catalytic hydrogenation of olefins. The third chapter examines the mechanistic studies of the intermolecular hydroaminoalkylation using SOMC to identify the key metallacyclic surface intermediates (silica-supported three-membred and five-membered). The catalyst was regenerated by protonolysis and afforded pure amine. Catalytic testing of a selection of amine compounds with variable electronic properties was carried out. The fourth chapter deals with the generation and the characterization of well-defined silica-supported zirconium-imido complexes. The resulting species effectively catalyzes imine/imine cross-metathesis and thus considered as the first heterogeneous catalysts active for imine metathesis reaction. The fifth chapter studies the reaction of SBA15.1100 ºC with dry aniline and derivatives leading to opening strained siloxane bridges into acid-base paired functionalities (formation of N-phenylsilanamine-silanol pairs). This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. The efficiency of this methodology is strongly supported and unambiguously highlighted by strong solid state characterizations: FT-IR, 1D and 2D solid state NMR spectroscopy and even dynamic nuclear polarization enhanced 29Si and 15N, XRD and TEM… Importantly, a plethora of well-organized bifunctional catalysts with different electronic properties were successfully synthesied and tested in the Knoevenagel condensation.en
dc.language.isoenen
dc.titleCatalysis by Design Using Surface Organometallic Nitrogen-Containing Fragmentsen
dc.typeDissertationen
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Divisionen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberTakanabe, Kazuhiroen
dc.contributor.committeememberSarathy, Manien
dc.contributor.committeememberAstruc, Didieren
thesis.degree.disciplineChemical Sciencesen
thesis.degree.nameDoctor of Philosophyen
dc.person.id124422en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.