Low Complexity Precoder and Receiver Design for Massive MIMO Systems: A Large System Analysis using Random Matrix Theory

Handle URI:
http://hdl.handle.net/10754/608584
Title:
Low Complexity Precoder and Receiver Design for Massive MIMO Systems: A Large System Analysis using Random Matrix Theory
Authors:
Sifaou, Houssem ( 0000-0003-0630-7073 )
Abstract:
Massive MIMO systems are shown to be a promising technology for next generations of wireless communication networks. The realization of the attractive merits promised by massive MIMO systems requires advanced linear precoding and receiving techniques in order to mitigate the interference in downlink and uplink transmissions. This work considers the precoder and receiver design in massive MIMO systems. We first consider the design of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. The analysis is carried out under the asymptotic regime in which the number of the BS antennas and that of the users grow large with a bounded ratio. This allows us to leverage tools from random matrix theory in order to approximate the parameters of the optimal linear precoder and receiver by their deterministic approximations. Such a result is of valuable practical interest, as it provides a handier way to implement the optimal precoder and receiver. To reduce further the complexity, we propose to apply the truncated polynomial expansion (TPE) concept on a per-user basis to approximate the inverse of large matrices that appear on the expressions of the optimal linear transceivers. Using tools from random matrix theory, we determine deterministic approximations of the SINR and the transmit power in the asymptotic regime. Then, the optimal per-user weight coe cients that solve the max-min SINR problem are derived. The simulation results show that the proposed precoder and receiver provide very close to optimal performance while reducing signi cantly the computational complexity. As a second part of this work, the TPE technique in a per-user basis is applied to the optimal linear precoding that minimizes the transmit power while satisfying a set of target SINR constraints. Due to the emerging research eld of green cellular networks, such a problem is receiving increasing interest nowadays. Closed form expressions of the optimal parameters of the proposed low complexity precoding for power minimization are derived. Numerical results show that the proposed power minimization precoding approximates well the performance of the optimal linear precoding while being more practical for implementation.
Advisors:
Alouini, Mohamed-Slim ( 0000-0003-4827-1793 )
Committee Member:
Kammoun, Abla ( 0000-0002-0195-3159 ) ; Al-Naffouri, Tareq; Sun, Ying ( 0000-0001-6703-4270 )
KAUST Department:
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division; Electrical Engineering Program
Program:
Electrical Engineering
Issue Date:
May-2016
Type:
Thesis
Appears in Collections:
Theses; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

Full metadata record

DC FieldValue Language
dc.contributor.advisorAlouini, Mohamed-Slimen
dc.contributor.authorSifaou, Houssemen
dc.date.accessioned2016-05-08T11:35:43Zen
dc.date.available2016-05-08T11:35:43Zen
dc.date.issued2016-05en
dc.identifier.urihttp://hdl.handle.net/10754/608584en
dc.description.abstractMassive MIMO systems are shown to be a promising technology for next generations of wireless communication networks. The realization of the attractive merits promised by massive MIMO systems requires advanced linear precoding and receiving techniques in order to mitigate the interference in downlink and uplink transmissions. This work considers the precoder and receiver design in massive MIMO systems. We first consider the design of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. The analysis is carried out under the asymptotic regime in which the number of the BS antennas and that of the users grow large with a bounded ratio. This allows us to leverage tools from random matrix theory in order to approximate the parameters of the optimal linear precoder and receiver by their deterministic approximations. Such a result is of valuable practical interest, as it provides a handier way to implement the optimal precoder and receiver. To reduce further the complexity, we propose to apply the truncated polynomial expansion (TPE) concept on a per-user basis to approximate the inverse of large matrices that appear on the expressions of the optimal linear transceivers. Using tools from random matrix theory, we determine deterministic approximations of the SINR and the transmit power in the asymptotic regime. Then, the optimal per-user weight coe cients that solve the max-min SINR problem are derived. The simulation results show that the proposed precoder and receiver provide very close to optimal performance while reducing signi cantly the computational complexity. As a second part of this work, the TPE technique in a per-user basis is applied to the optimal linear precoding that minimizes the transmit power while satisfying a set of target SINR constraints. Due to the emerging research eld of green cellular networks, such a problem is receiving increasing interest nowadays. Closed form expressions of the optimal parameters of the proposed low complexity precoding for power minimization are derived. Numerical results show that the proposed power minimization precoding approximates well the performance of the optimal linear precoding while being more practical for implementation.en
dc.language.isoenen
dc.subjectMassive MIMOen
dc.subjectLinear precodingen
dc.subjectlinear receiveren
dc.subjectAsymptotic analysisen
dc.subjectRandom matrix theoryen
dc.subjectlow complexityen
dc.titleLow Complexity Precoder and Receiver Design for Massive MIMO Systems: A Large System Analysis using Random Matrix Theoryen
dc.typeThesisen
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Divisionen
dc.contributor.departmentElectrical Engineering Programen
thesis.degree.grantorKing Abdullah University of Science and Technologyen_GB
dc.contributor.committeememberKammoun, Ablaen
dc.contributor.committeememberAl-Naffouri, Tareqen
dc.contributor.committeememberSun, Yingen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.nameMaster of Scienceen
dc.person.id132128en
All Items in KAUST are protected by copyright, with all rights reserved, unless otherwise indicated.